Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccination on the horizon for severe viral infection of the brain

24.09.2015

Researchers from the University of Zurich and the University Hospital Zurich reveal possible new treatment methods for a rare, usually fatal brain disease. Thanks to their discovery that specific antibodies play a key role in combating the viral infection, a vaccine against the disease "progressive multifocal leukoencephalopathy" could now be developed.

Humans carry a multitude of viruses and bacteria in their gut, on their skin and in other organs. Often, these are involved in important bodily functions. Under certain conditions, however, some can also cause diseases.


Infection (light zone) in the brain of multiple sclerosis patients suffering from progressive multifocal leukoencephalopathy (PML).

(Image: Neuroradiology, USZ)

The JC virus, a member of the polyoma tumor virus family, is a prime example. This pathogen was first isolated from the brain of a patient who was suffering from a rare brain disease known as progressive multifocal leukoencephalopathy (PML). The virus, which more than 60 percent of the global population are infected with, normally resides in the kidneys and certain other organs. JC virus can trigger the PML infection in the brain, which, in most cases, is fatal.

Weak immune system facilitates brain infection

Two studies conducted by an international team of researchers from the University of Zurich, the University Hospital Zurich, the National Institutes of Health in the USA, San Raffaele Hospital in Milan, the University of Tübingen, and the UZH spin-off Neurimmune now reveal that the antibodies in PML patients often fail to recognize the JC virus they are infected with.

“In healthy people, the disease never breaks out as the immune system keeps it well under control. Once the immune system is compromised, however, such as in patients with tumors, leukemia, AIDS, autoimmune diseases and certain immunosuppressive treatments, the JC virus is able to alter its genetic information and infect the brain,” explains Roland Martin, professor of neurology at the University of Zurich.

In multiple sclerosis (MS) patients, for instance, the treatment with a particular antibody, TysabriTM, prevents immune cells from reaching the brain – but at the same time, also inhibits the brain’s immunosurveillance. If JC viruses enter the brain during the treatment, they go undetected, which can cause PML, the most significant side effect of the highly effective TysabriTM.

Over 560 MS patients worldwide have already developed the PML brain infection. Over 20 percent of them died from the disease as there is no effective treatment to date. Only if the immune system function is completely restored can the JC virus be removed from the brain.

Active vaccination method and therapeutic antibodies developed in Zurich

The researchers now reveal potential ways to vaccinate against PML preventatively or, if the brain has already been infected, treat it with virus-specific human antibodies. By vaccinating mice and a PML patient with the virus’ coating protein, the international groups were able to demonstrate that the antibody response was so strong that the patient was soon able to eliminate the JC virus.

The so-called active vaccination method was developed at the University of Zurich and the University Hospital Zurich, and has already been used successfully on two more patients. The JC-virus-specific antibodies that are of interest for the treatment of the existing brain infection were developed by the group at the University of Zurich and the University Hospital Zurich together with colleagues from the University of Tübingen and the biotechnology company Neurimmune in Schlieren.

“We made a major breakthrough: We managed to isolate antibody-producing cells from a patient who survived PML and use them to produce neutralizing antibodies against the JC virus. These human antibodies have a major advantage: they recognize the most important mutants of the JC virus that can cause PML. They now make promising candidates for the development of a treatment for PML,” concludes Martin.

Literature:
Ray U, Cinque P, Gerevini S, Longo V, Lazzarin A, Schippling S, Martin R, Buck CB, and Pastrana DV. JC Polyomavirus Mutants Escape Antibody-Mediated Neutralization. Science Translational Medicine, September 23, 2015. Vol. 7, Issue 306, pp. 306ra151 DOI: 10.1126/scitranslmed.aab1720

Jelcic I, Combaluzier B Jelcic I, Faigle W, Senn L, Reinhart BJ, Ströh L, Nitsch RM, Stehle T, Sospedra M, Grimm J, Martin R. Broadly neutralizing human monoclonal JC polyomavirus VP1-specifc antibodies as candidate therapeutics for progressive multifocal leukoencephalopathy. Science Translational Medicine Transl Med. September 23, 2015. Vol. 7, Issue 306, pp. 306ra150 DOI: 10.1126/scitranslmed.aac8691

Weitere Informationen:

http://www.mediadesk.uzh.ch/articles/2015/auf-dem-weg-zu-einer-impfung-bei-schwe...

Melanie Nyfeler | Universität Zürich

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>