Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccinating chickens could prevent food-borne illness

26.03.2012
A vaccine could be developed to prevent Campylobacter being carried in chickens. This approach could drastically cut the number of cases of food poisoning, saving the UK economy millions each year, says an American scientist presenting his work at the Society for General Microbiology's Spring Conference in Dublin.

Food-borne illness costs the UK an estimated £2 billion each year. Campylobacter is the leading cause of food-borne illness and is responsible for about 30% of cases in the UK. Campylobacter jejuniwas responsible for more than 371,000 estimated cases in England and Wales in 2009, resulting in more than 17,500 hospitalizations and 88 deaths.

Campylobacter jejuni is found in the gut of many animals, including chickens. If Campylobacter-contaminated poultry is not prepared and cooked properly, the micro-organism can be transmitted to humans where it may cause severe gastrointestinal disease.

Scientists at Washington State University are studying the maternal antibodies that are passed from hens to their chicks. "These antibodies protect chicks from becoming colonized by Campylobacter in the first week of life," explained Professor Michael Konkel who is leading the research. "Our group has now identified the bacterial molecules that these antibodies attack, which has given us a starting point for a vaccine against Campylobacter," he said. "We have already found that chickens injected with these specific molecules – found on the surface of Campylobacter jejuni – produce antibodies against the bacterium. This response partially protects them from colonization."

A vaccine could be a powerful weapon to help control food-borne illness. "Preventing contamination of poultry at slaughter has not been effective at reducing illness in humans. It has been shown that about 65% of chickens on retail sale in the UK are contaminated with Campylobacter," explained Professor Konkel. "Ideally, the best way to prevent contamination is to stop chickens on the farm from becoming colonized with this microorganism in the first place, which could be achieved by vaccination. Our goal within the next 6 months is to test a vaccine for chickens that will reduce Campylobacter colonization levels. There's still a long way to go, but I'm confident our lab and others are moving in the right direction."

Controlling food-borne illness through vaccination would have a significant impact both in the UK and globally. "A safe food supply is central to human health. If we can decrease the load of human pathogens in food animals, then we can reduce human illness. A 1% reduction in the number of cases of food-borne illness would save the UK around £20 million per year. In developing countries, where people and food animals often share the same environment, diseased animals also pose a direct public health risk; vaccination would help mitigate this risk," said Professor Konkel.

Laura Udakis | EurekAlert!
Further information:
http://www.sgm.ac.uk

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>