Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Vaccinating chickens could prevent food-borne illness

A vaccine could be developed to prevent Campylobacter being carried in chickens. This approach could drastically cut the number of cases of food poisoning, saving the UK economy millions each year, says an American scientist presenting his work at the Society for General Microbiology's Spring Conference in Dublin.

Food-borne illness costs the UK an estimated £2 billion each year. Campylobacter is the leading cause of food-borne illness and is responsible for about 30% of cases in the UK. Campylobacter jejuniwas responsible for more than 371,000 estimated cases in England and Wales in 2009, resulting in more than 17,500 hospitalizations and 88 deaths.

Campylobacter jejuni is found in the gut of many animals, including chickens. If Campylobacter-contaminated poultry is not prepared and cooked properly, the micro-organism can be transmitted to humans where it may cause severe gastrointestinal disease.

Scientists at Washington State University are studying the maternal antibodies that are passed from hens to their chicks. "These antibodies protect chicks from becoming colonized by Campylobacter in the first week of life," explained Professor Michael Konkel who is leading the research. "Our group has now identified the bacterial molecules that these antibodies attack, which has given us a starting point for a vaccine against Campylobacter," he said. "We have already found that chickens injected with these specific molecules – found on the surface of Campylobacter jejuni – produce antibodies against the bacterium. This response partially protects them from colonization."

A vaccine could be a powerful weapon to help control food-borne illness. "Preventing contamination of poultry at slaughter has not been effective at reducing illness in humans. It has been shown that about 65% of chickens on retail sale in the UK are contaminated with Campylobacter," explained Professor Konkel. "Ideally, the best way to prevent contamination is to stop chickens on the farm from becoming colonized with this microorganism in the first place, which could be achieved by vaccination. Our goal within the next 6 months is to test a vaccine for chickens that will reduce Campylobacter colonization levels. There's still a long way to go, but I'm confident our lab and others are moving in the right direction."

Controlling food-borne illness through vaccination would have a significant impact both in the UK and globally. "A safe food supply is central to human health. If we can decrease the load of human pathogens in food animals, then we can reduce human illness. A 1% reduction in the number of cases of food-borne illness would save the UK around £20 million per year. In developing countries, where people and food animals often share the same environment, diseased animals also pose a direct public health risk; vaccination would help mitigate this risk," said Professor Konkel.

Laura Udakis | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>