Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Dallas study suggests new approach to fight lung cancer

19.06.2013
Recent research has shown that cancer cells have a much different – and more complex – metabolism than normal cells. Now, scientists at The University of Texas at Dallas have found that exploiting these differences might provide a new strategy to combat lung cancer.

In an article published online May 21 in the journal PLOS ONE, UT Dallas researchers compared the metabolic characteristics of non-small-cell lung cancer cells with normal lung cells taken from the same patient.

They found that the cancer cells consumed substantially more oxygen than normal cells, about two and a half times as much. The lung cancer cells also outpaced their normal counterparts in synthesizing a critical chemical called heme.

Heme is an iron-containing molecule that is a component of a variety of hemoproteins, which transport, store and use oxygen throughout the body, among other functions. These proteins directly regulate many processes involved in oxygen metabolism, converting oxygen to the energy that cells need to thrive. For example, heme binds to and transports oxygen to cells via the familiar hemoglobin protein.

"We reasoned that the enhanced oxygen consumption we found in lung cancer cells might be attributable to increased levels of heme and hemoproteins," said Dr. Li Zhang, professor of molecular and cell biology at UT Dallas and senior author of the paper.

To test this possibility, Zhang and biology graduate student Jagmohan Hooda measured and compared the levels of heme that lung cancer cells synthesize and the amount that normal lung cells make.

"All cells need a certain level of heme, but our findings indicate that normal cells need much less heme compared to cancer cells," Zhang said. "We think a high level of heme in cancer cells results in a lot more hemoproteins, which metabolize oxygen and produce more cellular energy. That then drives the cancer cells to proliferate, to migrate and to form colonies.

"Cancer cells not only make significantly more heme, we also found they uptake more heme from the blood," said Zhang, who holds the Cecil H. and Ida Green Distinguished Chair in Systems Biology Science.

Zhang and Hooda then treated the matched set of lung cancer and normal lung cells with a heme inhibitor called succinyl acetone. The chemical blocks cells from synthesizing heme.

Other researchers have previously studied the ability of succinyl acetone to inhibit growth of various types of cancer cells, but until the UT Dallas study, Zhang said it was not known whether those effects were unique to cancer in general or how the compound might affect normal cells.

"Before our study, scientists didn't know whether there was any difference in effect between cancer cells and normal cells," Zhang said. "Now we know that this compound doesn't have much effect on normal cells, but it does have an effect on lung cancer cells."

Inhibiting the cancer cells' ability to produce heme affected those cells dramatically, said Hooda, who was the lead author of the study.

"Suppressing heme availability reduced the lung cancer cells' ability to use oxygen, and hence the cells' ability to proliferate and migrate," he said. "The cultured cancer cells we studied stopped proliferating and eventually died."

Zhang said a key finding was that normal cells don't need that much heme to function properly.

"When you inhibit heme synthesis or deplete heme, it doesn't affect normal cells too much," she said. "It selectively affects cancer cells. That's the beauty of our work.

"Because inhibiting heme effectively arrested the progression of lung cancer cells, our findings could positively impact research on lung cancer biology and therapeutics."

The National Cancer Institute estimates that 228,000 new cases of lung cancer will be diagnosed and more than 159,000 deaths from the disease will occur in the U.S. in 2013.

Although more research is needed before new therapies might be developed from the findings, Hooda said the heme-inhibiting technique would likely not be toxic to humans, noting that succinyl acetone would not need to eliminate all heme synthesis in the body.

"Even after lowering heme levels to the point that cancer cells are affected, it's likely that normal cells would live on with a small amount of heme," Hooda said.

The National Cancer Institute and UT Dallas's Cecil and Ida Green Center for Systems Biology Science supported the research. In addition to Zhang and Hooda, other researchers from UT Dallas's Department of Molecular and Cell Biology who were involved in the study were: co-lead author Daniela Cadinu, now at the Max-Planck Institute for Neurological Research; graduate students Md Maksudal Alam and Ajit Shah; and Thai Cao, research technician. Researchers from UT Southwestern Medical Center also contributed.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utdallas.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>