Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Dallas study suggests new approach to fight lung cancer

19.06.2013
Recent research has shown that cancer cells have a much different – and more complex – metabolism than normal cells. Now, scientists at The University of Texas at Dallas have found that exploiting these differences might provide a new strategy to combat lung cancer.

In an article published online May 21 in the journal PLOS ONE, UT Dallas researchers compared the metabolic characteristics of non-small-cell lung cancer cells with normal lung cells taken from the same patient.

They found that the cancer cells consumed substantially more oxygen than normal cells, about two and a half times as much. The lung cancer cells also outpaced their normal counterparts in synthesizing a critical chemical called heme.

Heme is an iron-containing molecule that is a component of a variety of hemoproteins, which transport, store and use oxygen throughout the body, among other functions. These proteins directly regulate many processes involved in oxygen metabolism, converting oxygen to the energy that cells need to thrive. For example, heme binds to and transports oxygen to cells via the familiar hemoglobin protein.

"We reasoned that the enhanced oxygen consumption we found in lung cancer cells might be attributable to increased levels of heme and hemoproteins," said Dr. Li Zhang, professor of molecular and cell biology at UT Dallas and senior author of the paper.

To test this possibility, Zhang and biology graduate student Jagmohan Hooda measured and compared the levels of heme that lung cancer cells synthesize and the amount that normal lung cells make.

"All cells need a certain level of heme, but our findings indicate that normal cells need much less heme compared to cancer cells," Zhang said. "We think a high level of heme in cancer cells results in a lot more hemoproteins, which metabolize oxygen and produce more cellular energy. That then drives the cancer cells to proliferate, to migrate and to form colonies.

"Cancer cells not only make significantly more heme, we also found they uptake more heme from the blood," said Zhang, who holds the Cecil H. and Ida Green Distinguished Chair in Systems Biology Science.

Zhang and Hooda then treated the matched set of lung cancer and normal lung cells with a heme inhibitor called succinyl acetone. The chemical blocks cells from synthesizing heme.

Other researchers have previously studied the ability of succinyl acetone to inhibit growth of various types of cancer cells, but until the UT Dallas study, Zhang said it was not known whether those effects were unique to cancer in general or how the compound might affect normal cells.

"Before our study, scientists didn't know whether there was any difference in effect between cancer cells and normal cells," Zhang said. "Now we know that this compound doesn't have much effect on normal cells, but it does have an effect on lung cancer cells."

Inhibiting the cancer cells' ability to produce heme affected those cells dramatically, said Hooda, who was the lead author of the study.

"Suppressing heme availability reduced the lung cancer cells' ability to use oxygen, and hence the cells' ability to proliferate and migrate," he said. "The cultured cancer cells we studied stopped proliferating and eventually died."

Zhang said a key finding was that normal cells don't need that much heme to function properly.

"When you inhibit heme synthesis or deplete heme, it doesn't affect normal cells too much," she said. "It selectively affects cancer cells. That's the beauty of our work.

"Because inhibiting heme effectively arrested the progression of lung cancer cells, our findings could positively impact research on lung cancer biology and therapeutics."

The National Cancer Institute estimates that 228,000 new cases of lung cancer will be diagnosed and more than 159,000 deaths from the disease will occur in the U.S. in 2013.

Although more research is needed before new therapies might be developed from the findings, Hooda said the heme-inhibiting technique would likely not be toxic to humans, noting that succinyl acetone would not need to eliminate all heme synthesis in the body.

"Even after lowering heme levels to the point that cancer cells are affected, it's likely that normal cells would live on with a small amount of heme," Hooda said.

The National Cancer Institute and UT Dallas's Cecil and Ida Green Center for Systems Biology Science supported the research. In addition to Zhang and Hooda, other researchers from UT Dallas's Department of Molecular and Cell Biology who were involved in the study were: co-lead author Daniela Cadinu, now at the Max-Planck Institute for Neurological Research; graduate students Md Maksudal Alam and Ajit Shah; and Thai Cao, research technician. Researchers from UT Southwestern Medical Center also contributed.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utdallas.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>