Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique AED pads give hearts a second chance

27.04.2011
Rice University, Texas Heart Institute collaborators invent life-saving device

An invention by Rice University bioengineering students in collaboration with the Texas Heart Institute (THI) is geared toward giving immediate second chances to arrhythmia victims headed toward cardiac arrest.

For their capstone design project, a team of Rice seniors created a unique pad system for automated external defibrillators (AEDs), common devices that can shock a victim's heart back into a proper rhythm in an emergency.

Often, the first shock doesn't reset a heart and the procedure must be repeated, but the sticky pads on the chest must first be repositioned. The pads need to be in the right location to send current through the heart, and someone with no experience who tries to provide aid might miss the first time.

The Second-Chance AED Pads let rescuers try again without losing valuable time to remove the pads from the victim's chest. The pads incorporate three electrodes, two in a single pad with an A/B switch attached, and a third in its own pad.

If one shock doesn't restart the patient's heart, flipping the switch will change the jolt's path, just a little bit, for the second attempt.

The pads were developed by students on the DefibTaskForce -- Lisa Jiang, Joanna Nathan, Justin Lin, Carl Nelson and Brad Otto -- in tandem with Mehdi Razavi, director of electrophysiology clinical research at THI, and their adviser, Renata Ramos, a Rice lecturer in bioengineering.

The potential for their project was clear from the beginning. "We did some calculations that suggested we could save at least 13,000 lives per year," Otto said. "Cardiac defibrillation is very time-sensitive. Thirty seconds can be the difference between life and death in a lot of situations. The time it takes to flip the switch is negligible compared with the time it takes to remove the pads, shave and prep a new area on the body, reapply the pads and administer another shock. And a layman might not even know to try a second position."

Rather than try to build a new type of AED, the team decided early on that it was enough to simply design new pads that would fit devices that are already in use. Manufacturers generally require AED pads be replaced every two years, which provides a ready market for the students' invention. "But well over 100,000 AED units are produced every year, so even if our pads are only paired with new AEDs, we have a significant market," Lin said.

Getting the instructions right turned out to be just as important as the device itself and required a lot of illustrative trial and error. In tests for the final version at Rice's Oshman Engineering Design Kitchen, the team recruited students with no experience using an AED to shock a medical mannequin back to life. "We had 100 percent of the testers place the pads correctly, showing it was very intuitive to use," Jiang said.

All five team members, along with Razavi and Ramos, are listed on the provisional patent. They hope an AED manufacturer will pick up the rights to the Second-Chance pads for clinical trials and ultimately FDA approval.

A video of students demonstrating the Second-Chance pads is available at http://www.youtube.com/watch?v=FYChUo1oJM4

Download high-resolution photos of the team and device at
http://www.media.rice.edu/images/media/NEWSRELS/0425_AED1.jpg
http://www.media.rice.edu/images/media/NEWSRELS/0425_AED2.jpg
CAPTIONS:
(Instructions)
Rice University students developed a clear, concise instruction card for use with automated external defibrillators fitted with Second-Chance AED Pads. They wanted complete novices to be able to use the device with minimum hesitation. (Credit Jeff Fitlow/Rice University)

(Team)

Members of Rice University's DefibTaskForce, clockwise from left, are Lisa Jiang, Justin Lin, Carl Nelson, Joanna Nathan and Brad Otto. They have developed a set of replacement pads for automated external defibrillators that quickly give rescuers a second chance at shocking a heart back into a proper rhythm. (Credit Jeff Fitlow/Rice University)

Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://futureowls.rice.edu/images/futureowls/Rice_Brag_Sheet.pdf.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>