Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique AED pads give hearts a second chance

27.04.2011
Rice University, Texas Heart Institute collaborators invent life-saving device

An invention by Rice University bioengineering students in collaboration with the Texas Heart Institute (THI) is geared toward giving immediate second chances to arrhythmia victims headed toward cardiac arrest.

For their capstone design project, a team of Rice seniors created a unique pad system for automated external defibrillators (AEDs), common devices that can shock a victim's heart back into a proper rhythm in an emergency.

Often, the first shock doesn't reset a heart and the procedure must be repeated, but the sticky pads on the chest must first be repositioned. The pads need to be in the right location to send current through the heart, and someone with no experience who tries to provide aid might miss the first time.

The Second-Chance AED Pads let rescuers try again without losing valuable time to remove the pads from the victim's chest. The pads incorporate three electrodes, two in a single pad with an A/B switch attached, and a third in its own pad.

If one shock doesn't restart the patient's heart, flipping the switch will change the jolt's path, just a little bit, for the second attempt.

The pads were developed by students on the DefibTaskForce -- Lisa Jiang, Joanna Nathan, Justin Lin, Carl Nelson and Brad Otto -- in tandem with Mehdi Razavi, director of electrophysiology clinical research at THI, and their adviser, Renata Ramos, a Rice lecturer in bioengineering.

The potential for their project was clear from the beginning. "We did some calculations that suggested we could save at least 13,000 lives per year," Otto said. "Cardiac defibrillation is very time-sensitive. Thirty seconds can be the difference between life and death in a lot of situations. The time it takes to flip the switch is negligible compared with the time it takes to remove the pads, shave and prep a new area on the body, reapply the pads and administer another shock. And a layman might not even know to try a second position."

Rather than try to build a new type of AED, the team decided early on that it was enough to simply design new pads that would fit devices that are already in use. Manufacturers generally require AED pads be replaced every two years, which provides a ready market for the students' invention. "But well over 100,000 AED units are produced every year, so even if our pads are only paired with new AEDs, we have a significant market," Lin said.

Getting the instructions right turned out to be just as important as the device itself and required a lot of illustrative trial and error. In tests for the final version at Rice's Oshman Engineering Design Kitchen, the team recruited students with no experience using an AED to shock a medical mannequin back to life. "We had 100 percent of the testers place the pads correctly, showing it was very intuitive to use," Jiang said.

All five team members, along with Razavi and Ramos, are listed on the provisional patent. They hope an AED manufacturer will pick up the rights to the Second-Chance pads for clinical trials and ultimately FDA approval.

A video of students demonstrating the Second-Chance pads is available at http://www.youtube.com/watch?v=FYChUo1oJM4

Download high-resolution photos of the team and device at
http://www.media.rice.edu/images/media/NEWSRELS/0425_AED1.jpg
http://www.media.rice.edu/images/media/NEWSRELS/0425_AED2.jpg
CAPTIONS:
(Instructions)
Rice University students developed a clear, concise instruction card for use with automated external defibrillators fitted with Second-Chance AED Pads. They wanted complete novices to be able to use the device with minimum hesitation. (Credit Jeff Fitlow/Rice University)

(Team)

Members of Rice University's DefibTaskForce, clockwise from left, are Lisa Jiang, Justin Lin, Carl Nelson, Joanna Nathan and Brad Otto. They have developed a set of replacement pads for automated external defibrillators that quickly give rescuers a second chance at shocking a heart back into a proper rhythm. (Credit Jeff Fitlow/Rice University)

Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://futureowls.rice.edu/images/futureowls/Rice_Brag_Sheet.pdf.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>