Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC study reveals potential route to bladder cancer diagnostics, treatments

12.02.2014
Researchers at the UNC Lineberger Comprehensive Cancer Center found that bladder cancer subtypes are genetically similar to breast cancer subtypes.

Researchers at the UNC School of Medicine conducted a comprehensive genetic analysis of invasive bladder cancer tumors to discover that the disease shares genetic similarities with two forms of breast cancer.

The finding is significant because a greater understanding of the genetic basis of cancers, such as breast cancers, has in the recent past led to the development of new therapies and diagnostic aids.

Bladder cancer, which is the fourth most common malignancy in men and ninth in women in the United States, claimed more than 15,000 lives last year.

The analysis of 262 bladder cancer tumors, published online in the Proceedings of the National Academy of Sciences, revealed that the invasive form of the disease can be classified into two distinct genetic subtypes – basal-like and luminal – which were shown to be highly similar to the basal and luminal subtypes of breast cancer first described by Charles Perou, PhD, the May Goldman Shaw Distinguished Professor of Molecular Oncology at UNC Lineberger.

“It will be particularly interesting to see whether the bladder subtypes, like the breast subtypes, are useful in stratification for therapy,” said lead author William Kim, MD, a researcher at the UNC Lineberger Comprehensive Cancer Center and associate professor in the departments of genetics and medicine at UNC.

Mapping genetic signaling pathways of breast cancer subtypes has led to the development of drugs to treat patients and diagnostic aids that help physicians determine the best course of therapy for patients. Because the identified bladder cancer subtypes share many of the same genetic signaling pathways of breast cancer, researchers hope that the identification of the genetic subtypes can lead to similar advances.

“Currently there are no approved targeted therapies for bladder cancer,” said lead author Jeffrey Damrauer, graduate student in the Curriculum of Genetics and Molecular Biology at the UNC School of Medicine. “Our hope is that the identification of these subtypes will aid in the discovery of targetable pathways that will advance bladder cancer treatment.”

The study also revealed a possible answer to why women diagnosed with bladder cancer have overall poorer outcomes compared to males. Analysis showed that female patients had a significantly higher incidence of the deadlier basal-like tumors. But researchers said that more research is needed before a definite link between the subtype and survival rate can be confirmed.

Dr. Kim’s lab has developed a gene map – BASE47 – that proved successful as a prognostic aid when applied to the tumor samples in the study. The PAM50 genetic test, a similar genetic map developed in the Perou lab, was recently approved as a clinical diagnostic tool by the FDA.

Additional LCCC members contributing to this work are Katherine Hoadley, PhD; David Chism, MD; Cheng Fan; Christopher Tiganelli, MD; Sara Wobker, MD; Jen Jen Yeh, MD; Matthew Milowsky, MD; and Joel Parker, PhD.

This work was supported by National Institutes of Health Grant R01 CA142794 and Integrative Vascular Biology Training Grant T32-HL069768. Dr. Kim is a Damon Runyon Merck Clinical Investigator. Dr. Kim and Damrauer are inventors on the patent for the BASE47.

William Davis | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>