Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists discover potential strategy to improve cancer vaccines

15.12.2010
The promise of vaccines targeted against various types of cancer has raised the hopes of patients and their families. The reality, however, is that these promising treatments are difficult to develop.

One of the challenges is identifying a discrete cellular target to stop cancer growth without inactivating the immune system. Scientists at UNC Lineberger Comprehensive Cancer Center report a laboratory finding that has the potential to increase the effectiveness of therapeutic cancer vaccines.

The team found that the absence of the function of a protein called NLRP3 can result in a four-fold increase in a tumor's response to a therapeutic cancer vaccine. If this finding proves consistent, it may be a key to making cancer vaccines a realistic treatment option. Their findings were published in the Dec. 15, 2010 issue of the journal Cancer Research.

Jonathan Serody, MD, a study author, explains, "This finding suggests an unexpected role for NLRP3 in vaccine development and gives us a potentially pharmacologic target to increase vaccine efficacy."

The research team was headed by co-leaders of the UNC Lineberger Immunology Program: Serody, MD, an expert in tumor immunology, and Jenny Ting, PhD, a pioneer in understanding the NLR family of proteins. Serody is the Elizabeth Thomas Professor of Hematology and Oncology. Ting is UNC Alumni Distinguished Professor of Microbiology and Immunology and director of the Inflammation Center at UNC.

The team discovered that deleting the NLRP3 proteins reduced the supply of a tumor-associated cell called myeloid-derived suppressors, making them five times less effective in reaching the site of tumor growth. Researchers working with Serody had previously shown that these myeloid cells are critically important as they allow the tumor to evade a beneficial immune response. This finding is the first to link immature myeloid cells, NLRP3, and the response to cancer vaccines.

Serody says, "We had originally thought inactivating the NLRP3 protein would decrease the immune system's ability to respond to cancer because NLRP3 is important in alerting immune cells to changes in the environment the immune response to cancer. Instead what we found was that by inactivating these proteins, the tumor vaccine was made more effective because fewer myeloid-derived suppressor cells were available to promote tumor growth and reduce the efficacy of the vaccine."

At present, there is only one FDA-approved cancer vaccine called Provenge, used to treat advanced prostate cancer. Provenge has been shown to extend survival by three to four months.

Vaccines are difficult to make. Because a vaccine is person-specific, made with the individual's immune cells, the production process requires that the individual's cells are isolated and shipped to the company for vaccine production. As a result, the vaccines are expensive. Provenge costs approximately $100,000 for three treatments.

"A vaccine is not like a pill that can be manufactured in bulk," Serody explains. "And, it's not like developing a vaccine against a virus such as polio or smallpox. Cancer cells look a lot like regular cells, so it is hard to trick the body into thinking cancer cells are 'foreign.' Our hope is that our findings and future work in this area will enable us to develop more effective vaccines against many types of cancer. "

Other UNC authors are Hendrik W. van Deventer, MD, assistant professor of medicine; Joseph E. Burgents, former UNC graduate student, now a postdoctoral fellow at the National Institute of Environmental Health Sciences; Qing Ping Wu, research specialist; Rita-Marie T. Woodford, research assistant in the UNC School of Dentistry; W. June Brickey, research assistant professor of microbiology and immunology; Irving C. Allen, PhD, postdoctoral fellow, UNC Lineberger; and Erin McElvania-Tekippe, former UNC graduate student, now a postdoctoral fellow at Washington University in St. Louis.

Dianne Shaw | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: Immunology NLRP3 UNC cancer vaccines immune cell immune response immune system tumor growth

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>