Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists discover potential strategy to improve cancer vaccines

15.12.2010
The promise of vaccines targeted against various types of cancer has raised the hopes of patients and their families. The reality, however, is that these promising treatments are difficult to develop.

One of the challenges is identifying a discrete cellular target to stop cancer growth without inactivating the immune system. Scientists at UNC Lineberger Comprehensive Cancer Center report a laboratory finding that has the potential to increase the effectiveness of therapeutic cancer vaccines.

The team found that the absence of the function of a protein called NLRP3 can result in a four-fold increase in a tumor's response to a therapeutic cancer vaccine. If this finding proves consistent, it may be a key to making cancer vaccines a realistic treatment option. Their findings were published in the Dec. 15, 2010 issue of the journal Cancer Research.

Jonathan Serody, MD, a study author, explains, "This finding suggests an unexpected role for NLRP3 in vaccine development and gives us a potentially pharmacologic target to increase vaccine efficacy."

The research team was headed by co-leaders of the UNC Lineberger Immunology Program: Serody, MD, an expert in tumor immunology, and Jenny Ting, PhD, a pioneer in understanding the NLR family of proteins. Serody is the Elizabeth Thomas Professor of Hematology and Oncology. Ting is UNC Alumni Distinguished Professor of Microbiology and Immunology and director of the Inflammation Center at UNC.

The team discovered that deleting the NLRP3 proteins reduced the supply of a tumor-associated cell called myeloid-derived suppressors, making them five times less effective in reaching the site of tumor growth. Researchers working with Serody had previously shown that these myeloid cells are critically important as they allow the tumor to evade a beneficial immune response. This finding is the first to link immature myeloid cells, NLRP3, and the response to cancer vaccines.

Serody says, "We had originally thought inactivating the NLRP3 protein would decrease the immune system's ability to respond to cancer because NLRP3 is important in alerting immune cells to changes in the environment the immune response to cancer. Instead what we found was that by inactivating these proteins, the tumor vaccine was made more effective because fewer myeloid-derived suppressor cells were available to promote tumor growth and reduce the efficacy of the vaccine."

At present, there is only one FDA-approved cancer vaccine called Provenge, used to treat advanced prostate cancer. Provenge has been shown to extend survival by three to four months.

Vaccines are difficult to make. Because a vaccine is person-specific, made with the individual's immune cells, the production process requires that the individual's cells are isolated and shipped to the company for vaccine production. As a result, the vaccines are expensive. Provenge costs approximately $100,000 for three treatments.

"A vaccine is not like a pill that can be manufactured in bulk," Serody explains. "And, it's not like developing a vaccine against a virus such as polio or smallpox. Cancer cells look a lot like regular cells, so it is hard to trick the body into thinking cancer cells are 'foreign.' Our hope is that our findings and future work in this area will enable us to develop more effective vaccines against many types of cancer. "

Other UNC authors are Hendrik W. van Deventer, MD, assistant professor of medicine; Joseph E. Burgents, former UNC graduate student, now a postdoctoral fellow at the National Institute of Environmental Health Sciences; Qing Ping Wu, research specialist; Rita-Marie T. Woodford, research assistant in the UNC School of Dentistry; W. June Brickey, research assistant professor of microbiology and immunology; Irving C. Allen, PhD, postdoctoral fellow, UNC Lineberger; and Erin McElvania-Tekippe, former UNC graduate student, now a postdoctoral fellow at Washington University in St. Louis.

Dianne Shaw | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: Immunology NLRP3 UNC cancer vaccines immune cell immune response immune system tumor growth

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>