Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists discover potential strategy to improve cancer vaccines

15.12.2010
The promise of vaccines targeted against various types of cancer has raised the hopes of patients and their families. The reality, however, is that these promising treatments are difficult to develop.

One of the challenges is identifying a discrete cellular target to stop cancer growth without inactivating the immune system. Scientists at UNC Lineberger Comprehensive Cancer Center report a laboratory finding that has the potential to increase the effectiveness of therapeutic cancer vaccines.

The team found that the absence of the function of a protein called NLRP3 can result in a four-fold increase in a tumor's response to a therapeutic cancer vaccine. If this finding proves consistent, it may be a key to making cancer vaccines a realistic treatment option. Their findings were published in the Dec. 15, 2010 issue of the journal Cancer Research.

Jonathan Serody, MD, a study author, explains, "This finding suggests an unexpected role for NLRP3 in vaccine development and gives us a potentially pharmacologic target to increase vaccine efficacy."

The research team was headed by co-leaders of the UNC Lineberger Immunology Program: Serody, MD, an expert in tumor immunology, and Jenny Ting, PhD, a pioneer in understanding the NLR family of proteins. Serody is the Elizabeth Thomas Professor of Hematology and Oncology. Ting is UNC Alumni Distinguished Professor of Microbiology and Immunology and director of the Inflammation Center at UNC.

The team discovered that deleting the NLRP3 proteins reduced the supply of a tumor-associated cell called myeloid-derived suppressors, making them five times less effective in reaching the site of tumor growth. Researchers working with Serody had previously shown that these myeloid cells are critically important as they allow the tumor to evade a beneficial immune response. This finding is the first to link immature myeloid cells, NLRP3, and the response to cancer vaccines.

Serody says, "We had originally thought inactivating the NLRP3 protein would decrease the immune system's ability to respond to cancer because NLRP3 is important in alerting immune cells to changes in the environment the immune response to cancer. Instead what we found was that by inactivating these proteins, the tumor vaccine was made more effective because fewer myeloid-derived suppressor cells were available to promote tumor growth and reduce the efficacy of the vaccine."

At present, there is only one FDA-approved cancer vaccine called Provenge, used to treat advanced prostate cancer. Provenge has been shown to extend survival by three to four months.

Vaccines are difficult to make. Because a vaccine is person-specific, made with the individual's immune cells, the production process requires that the individual's cells are isolated and shipped to the company for vaccine production. As a result, the vaccines are expensive. Provenge costs approximately $100,000 for three treatments.

"A vaccine is not like a pill that can be manufactured in bulk," Serody explains. "And, it's not like developing a vaccine against a virus such as polio or smallpox. Cancer cells look a lot like regular cells, so it is hard to trick the body into thinking cancer cells are 'foreign.' Our hope is that our findings and future work in this area will enable us to develop more effective vaccines against many types of cancer. "

Other UNC authors are Hendrik W. van Deventer, MD, assistant professor of medicine; Joseph E. Burgents, former UNC graduate student, now a postdoctoral fellow at the National Institute of Environmental Health Sciences; Qing Ping Wu, research specialist; Rita-Marie T. Woodford, research assistant in the UNC School of Dentistry; W. June Brickey, research assistant professor of microbiology and immunology; Irving C. Allen, PhD, postdoctoral fellow, UNC Lineberger; and Erin McElvania-Tekippe, former UNC graduate student, now a postdoctoral fellow at Washington University in St. Louis.

Dianne Shaw | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: Immunology NLRP3 UNC cancer vaccines immune cell immune response immune system tumor growth

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>