Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis researcher develops model to foster new drug development to treat pain and epilepsy

13.12.2011
Drawing on X-ray crystallography and experimental data, as well as a software suite for predicting and designing protein structures, a UC Davis School of Medicine researcher has developed an algorithm that predicts what has been impossible to generate in the laboratory: the conformational changes in voltage-gated sodium channels when they are at rest or actively transmitting a signal in muscle and nerve cells.

Structural modeling of the voltage-sensing mechanism is important because it allows researchers to generate testable hypotheses and design new, highly specific drugs to treat a wide range of disorders, from chronic pain to epilepsy. The study is published in the Dec. 12 early edition of the Proceedings of the National Academy of Sciences.

Voltage-gated sodium channels are embedded in the plasma membranes of nerve and muscle cells. The channel consists of a large protein that allows sodium ions to pass when a change in voltage occurs across the cell membrane. While high-resolution structures of the voltage sensors that control ion-gate activation have been identified in an activated state, scientists need to know all of the conformational changes that occur throughout the cycle of activation and rest to develop better treatments for disease.

"Sodium channels transmit pain and are the sites of action of local anesthetics," said Vladimir Yarov-Yarovoy, an assistant professor of physiology and membrane biology at the UC Davis School of Medicine who developed the models in collaboration with researchers from the University of Washington in Seattle. "They are critical targets for new drug development for the treatment of chronic pain, epilepsy and other conditions caused by gain or loss-of-function mutations in voltage-gated sodium channels, which hyperexcite sensory neurons or attenuate action-potential firing causing pain or seizures."

Serious chronic pain affects at least 116 million Americans each year, and epilepsy affects nearly 3 million Americans and 50 million people worldwide. Yet, the treatment of chronic pain and epilepsy remains a major unmet medical need.

"Currently available drugs for these conditions have limited effectiveness and significant side effects," said Yarov-Yarovoy. "While the research community has focused on identifying selective inhibitors of sodium-channel subtypes in nerve, heart and muscle cells, no new therapies have advanced to clinical trials. The algorithm is an innovative approach that fosters the design of novel subtype-selective sodium channel blocking drugs that have high efficacy and minimal side effects to treat these disorders."

Yarov-Yarovy developed his high-resolution structural models using the Rosetta computational methods along with available X-ray crystallography and experimental data. The models sidestep a significant challenge to researchers -- the inability to obtain X-ray crystallography structures for the resting and intermediate states of the sodium channel because of their instability and the limitations of current X-ray crystallization techniques.

"To fully grasp the mechanism of voltage activation, we need to know more than one conformation of the voltage-sensing domain," said Benoít Roux, professor of biochemistry and molecular biophysics at the University of Chicago. "So far, X-ray crystallography has provided only the structure of the channel in the activated-state. The careful computational modeling developed by Yarov-Yarovoy is a powerful technique that is absolutely critical to advance our understanding of these systems."

The UC Davis School of Medicine is among the nation's leading medical schools, recognized for its research and primary-care programs. The school offers fully accredited master's degree programs in public health and in informatics, and its combined M.D.-Ph.D. program is training the next generation of physician-scientists to conduct high-impact research and translate discoveries into better clinical care. Along with being a recognized leader in medical research, the school is committed to serving underserved communities and advancing rural health. For more information, visit UC Davis School of Medicine at medschool.ucdavis.edu.

Carole Gan | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>