Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC researcher invents ¡°lab on a chip¡± device to study malaria

29.02.2012
University of British Columbia researcher Hongshen Ma has developed a simple and accurate device to study malaria, a disease that currently affects 500 million people per year worldwide and claims a million lives.
Spread by mosquitoes, malaria is caused by a tiny parasite that infects human red blood cells. Ma and his team designed a ¡°lab on a chip¡± device to better understand the changes in red blood cells caused by Plasmodium falciparum, the most common species of malaria parasites.

Ma explains the device will help those conducting laboratory research or clinical trials evaluate the efficacy of different compounds in treating malaria ¨C a disease that is increasingly resistant to drugs.

¡°Our results show that it¡¯s possible to precisely measure the stiffening of red blood cells caused by the parasite at various stages of infection,¡± says Ma, assistant professor in the UBC departments of mechanical engineering and urologic sciences, and senior research scientist at the Vancouver Prostate Center.

Normal human red blood cells must squeeze through capillaries many times smaller than their own diameter in order to deliver oxygen to all tissues in the body. Red blood cells infected with malaria gradually lose this capability, which disrupts blood flow, causing failure of vital organs and eventually death.

Measuring 2¡å x 1¡å (50 cm x 25 cm), Ma¡¯s microfluidic device deforms single red blood cells through a series of funnel-shaped constrictions. The pressure required to push the cell through each constriction is measured and then used to calculate the cell¡¯s deformability.

By measuring the deformability of an infected red blood cell, researchers can obtain vital information about the status of the disease and response to treatment, explains Ma, whose findings appear in the current issue of the journal Lab on a Chip.

Ma notes that although there has been considerable research on the biomechanics of malaria, ¡°current methods to measure red cell deformability are either too complex to be used in clinical settings or are not sensitive enough.¡±

Funding for this research was provided by a grant from the Bill and Melinda Gates Foundation¡¯s Grand Challenges in Global Health program.

Lorraine Chan | EurekAlert!
Further information:
http://www.ubc.ca

Further reports about: Grand Challenge Plasmodium falciparum UBC blood cell red blood cells

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>