Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC researcher invents ¡°lab on a chip¡± device to study malaria

29.02.2012
University of British Columbia researcher Hongshen Ma has developed a simple and accurate device to study malaria, a disease that currently affects 500 million people per year worldwide and claims a million lives.
Spread by mosquitoes, malaria is caused by a tiny parasite that infects human red blood cells. Ma and his team designed a ¡°lab on a chip¡± device to better understand the changes in red blood cells caused by Plasmodium falciparum, the most common species of malaria parasites.

Ma explains the device will help those conducting laboratory research or clinical trials evaluate the efficacy of different compounds in treating malaria ¨C a disease that is increasingly resistant to drugs.

¡°Our results show that it¡¯s possible to precisely measure the stiffening of red blood cells caused by the parasite at various stages of infection,¡± says Ma, assistant professor in the UBC departments of mechanical engineering and urologic sciences, and senior research scientist at the Vancouver Prostate Center.

Normal human red blood cells must squeeze through capillaries many times smaller than their own diameter in order to deliver oxygen to all tissues in the body. Red blood cells infected with malaria gradually lose this capability, which disrupts blood flow, causing failure of vital organs and eventually death.

Measuring 2¡å x 1¡å (50 cm x 25 cm), Ma¡¯s microfluidic device deforms single red blood cells through a series of funnel-shaped constrictions. The pressure required to push the cell through each constriction is measured and then used to calculate the cell¡¯s deformability.

By measuring the deformability of an infected red blood cell, researchers can obtain vital information about the status of the disease and response to treatment, explains Ma, whose findings appear in the current issue of the journal Lab on a Chip.

Ma notes that although there has been considerable research on the biomechanics of malaria, ¡°current methods to measure red cell deformability are either too complex to be used in clinical settings or are not sensitive enough.¡±

Funding for this research was provided by a grant from the Bill and Melinda Gates Foundation¡¯s Grand Challenges in Global Health program.

Lorraine Chan | EurekAlert!
Further information:
http://www.ubc.ca

Further reports about: Grand Challenge Plasmodium falciparum UBC blood cell red blood cells

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>