Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Type 2 diabetes patients transplanted with own bone marrow stem cells reduces insulin use

01.07.2013
A study carried out in India examining the safety and efficacy of self-donated (autologous), transplanted bone marrow stem cells in patients with type 2 diabetes (TD2M), has found that patients receiving the transplants, when compared to a control group of TD2M patients who did not receive transplantation, required less insulin post-transplantation.

The study appears as an early e-publication for the journal Cell Transplantation, and is now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/pre-prints/ct0920bhansali.

"There is growing interest in the scientific community for cellular therapies that use bone marrow-derived cells for the treatment of type 2 diabetes mellitus and its complications," said study corresponding author Anil Bhansali, PhD professor and head of the Endocrinology Department at the Post Graduate Institute of Medical Education in Chandrigarh, India. "But the potential of stem cell therapy for this disease is yet to be fully explored."

While there is growing interest in using stem cell transplantation to treat TD2M, few studies have examined the utility of bone marrow-derived stem cells. By experimenting with bone marrow-derived stem cells, the researchers sought to exploit the rich source of stem cells in bone marrow.

Their study aimed at evaluating the efficacy and safety of autologous bone marrow-derived stem cell transplantation in patients with T2DM and who also had good glycemic control. Good glycemic control emerged as an important factor in the transplantation group and in the non-transplanted control group.

Cell transplantation had a significant impact on the patients in this study as those administered cells demonstrated a significant reduction in insulin requirement. A significantly smaller reduction in the insulin requirement of the control group was also observed but a "repeated emphasis on life style modification" was believed to be a contributing factor in this effect.

According to Dr. Bhansali, the strength of their study included the inclusion of a homogenous patient population with T2DM which exhibited good glycemic control, and the presence of a similar control group that did not get cell transplants.

"The efficacy and safety of stem cell therapy needs to be established in a greater number of patients and with a longer duration follow-up," concluded Bhansali and his co-authors. "The data available so far from animal and human studies is encouraging, however, it has enormous limitations."

The researchers recommended determining which type of stem cells -hematopoietic, bone marrow or placenta-derived - might be best to treat T2DM. In addition, they said that post-transplantation patients needed close monitoring for the development of neoplasia as stem cells - whether multipotent or pluripotent - have the potential for malignant transformation.

They concluded that "autologous bone marrow-derived stem cell therapy in patients with T2DM results in significant decrease in insulin dose requirement."
Contact:
Dr. Anil Bhansali
Email: anilbhansaliendocrine@rediffmail.com
Citation:
Bhansali, A.; Asokumra,P.; Walia, R.; Bhansali, S.; Gupta, V.; Jain, A.; Sachdeva, N.; Sharma, R. R.; Marwaha, N.; Khandelwal, N. Efficacy and Safety of Autologous Bone Marrow Derived Stem Cell Transplantation in patients with Type 2 Diabetes mellitus: A randomized placebo-controlled study. Cell Transplantation.

Appeared or available online: April 2, 2013
The Coeditors-in-chief for CELL TRANSPLANTATION are at the Diabetes Research Institute, University of Miami Miller School of Medicine and Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan. Contact, Camillo Ricordi, MD at ricordi@miami.edu or Shinn-Zong Lin, MD, PhD at shinnzong@yahoo.com.tw or David Eve, PhD at celltransplantation@gmail.com

News release by Florida Science Communications http://www.sciencescribe.net

Robert Miranda | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct/pre-prints/ct0920bhansali

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>