Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treatment for tuberculosis can be guided by patients' genetics

08.02.2012
Gene that influences inflammatory response to infection predicts effectiveness of drug therapy

A gene that influences the inflammatory response to infection may also predict the effectiveness of drug treatment for a deadly form of tuberculosis.

An international collaboration between researchers at the University of Washington in Seattle, Duke University, Harvard University, the Oxford University Clinical Research Unit in Vietnam and Kings College London reported these findings Feb. 3 in the journal Cell.

These results suggest the possibility of tailoring tuberculosis treatment, based on a patient's genetic sequence at a gene called LTA4H, which controls the balance between pro-inflammatory and anti-inflammatory substances produced during an infection.

Tuberculosis can take hold if disease-fighting inflammation is either too weak or too strong. The strength of the response is in part the result of a person's LTA4H gene sequence. Knowing whether a patient has the gene sequence for one extreme response or the other could help guide medication decisions.

Lalita Ramakrishnan, professor of microbiology, medicine and immunology at the University of Washington and the senior author of the study, said that the study suggested that that increased TB disease severity in humans can occur for fundamentally opposite reasons. "The ability to tailor therapies to these divergent inflammatory states, based on a patient's sequence at LTA4H, could improve patient outcomes."

This important observation for people began with a study of the tiny zebrafish. In these animals, the researchers linked mutations in the zebrafish version of the LTA4H gene to increased susceptibility to a TB-like infection. David Tobin, now on the faculty of the Department of Molecular Genetics and Microbiology at Duke University, is first author of the study. He performed the research while he was a postdoctoral fellow in the University of Washington laboratory of Dr. Ramakrishnan, working closely with another postdoctoral fellow Francisco Roca.

After they understood the biological basis of susceptibility to infection in the zebrafish, the researchers turned to the same gene in humans. They identified a sequence of the gene that led to higher activity and increased inflammation. They then collaborated with other researchers at the University of Washington, including Mary-Claire King, and researchers in Vietnam and the U.K., including Guy Thwaites, to study the gene among patients in Vietnam with TB. They discovered that patients carrying one copy of the high-activity sequence of the gene and one copy of the low-activity sequence were relatively protected from TB meningitis, a particularly deadly form of TB. Surprisingly, people with two copies of the high-activity sequence of the gene fared just as poorly as people with two copies of the low-activity sequence. This "heterozygous advantage," or "Goldilocks effect," is an unusual finding in human genetics.

King commented "Throughout human history, people with both forms of the LTA4H gene have probably been more likely to survive when exposed to TB than people with only one form of the LTA4H gene. This advantage may have led to both forms of the gene persisting in human populations. Selection by infectious diseases has had an enormous impact on the evolution of our species."

This surprising finding, the researchers noted, implicated both insufficient and overly abundant inflammation as different ways TB could take hold in the body. By analyzing clinical data from patients in Vietnam with a particularly severe form of TB called TB meningitis, the researchers found that anti-inflammatory therapy only benefited patients with the gene sequence that corresponds to excess inflammation. The patients with the insufficient inflammation gene sequence derived no benefit from what has been adopted as a standard therapy for TB meningitis.

Given the clinical and therapeutic implications of these findings, the researchers sought the underlying molecular mechanisms for both extremes. For this they turned back to the zebrafish.

In collaboration with Charles Serhan, of Harvard University they showed that one gene variant weakened inflammation through the overproduction of substances called lipoxins. Hyperinflammation results from a gene variant that leads to an excess of leukotriene B4. Either can interfere with the overall levels of tumor necrosis factor, a substance that, when present in normal amounts, protects against TB infection and other diseases.

Paradoxically, either a deficiency or an overkill of tumor necrosis factor can cause macrophages, the host cells that gobble up pathogens, to die by bursting and releasing the TB pathogens into a "permissive extracellular milieu where they can grow exuberantly into corded mats" the researchers said.

The researchers then discovered that corticosteroids, which are in wide clinical use, as well the active ingredient in aspirin decreased TB infection in zebrafish with the "hot responder" genotype, but increased TB infection in their "cold responder" genotype siblings.

The researchers concluded, "If patients succumb to TB for two fundamentally different reasons, then it is imperative to design therapeutic strategies that reflect this dichotomy. For example, if evaluating the treatment effects of dexamethasone on TB meningitis doesn't take into account host genotype, the very substantial benefits of the drug for the high-reactive genotype may be diluted by its neutral or possibly detrimental effects on individuals with the low-activity genotype."

A simple gene test for the high-responding variant, they said, could provide a rapid, inexpensive way to determine which patients would benefit from dexamethasone therapy added to standard infection-fighting drugs. They also believe clinical studies are urgently needed to be sure patients with the low-reactive genotype are not harmed by unnecessary dexamethasone treatment, and to find alternative treatment strategies for this group, such as agents that limit lipoxin production or boost inflammation.

Because the basic inflammatory biochemical pathways affected by the LTA4H gene are common to many infections, the researchers said TB treatment strategies suggested by their findings may hold promise for other serious infections.

The study was funded by grants from the National Institutes of Health, an American Cancer Society postdoctoral fellowship, a Mallinckrodt Scholar Award, a postdoctoral fellowship from the educational ministry of Spain, the Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases, the Burroughs Wellcome Fund, the Wellcome Trust, the American Skin Association, the Dermatology Foundation, and the Chinese Academy of Sciences.

Ramakrishnan is a recipient of the NIH Director's Pioneer Award, Tobin is a recipient of the NIH Director's New Innovator Award and King is an American Cancer Society Professor.

Others on the project team are Sungwhan F. Oh, Ross McFarland, Thad D. Vickery, John P. Ray, Dennis C. Ko, Yuxia Zou, Nguyen D. Bang, Tran T. H. Chau, Jay C. Vary, Thomas R. Hawn, Sarah J. Dunstan, and Jeremy J. Farrar.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>