Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treatment for novel coronavirus shows promise in early lab tests

18.04.2013
Interferon and ribavirin inhibit virus replication in cell culture, NIH study finds

National Institutes of Health (NIH) scientists studying an emerging coronavirus have found that a combination of two licensed antiviral drugs, ribavirin and interferon-alpha 2b, can stop the virus from replicating in laboratory-grown cells.


This is a transmission electron micrograph of the novel coronavirus.
Credit: NIAID/RML

These results suggest that the drug combination could be used to treat patients infected with the new coronavirus, but more research is needed to confirm this preliminary finding. The study appears in the April 18, 2013, issue of Scientific Reports.

The new coronavirus, called nCoV, was first identified in Saudi Arabia in September 2012. As of April 16, 2013, the World Health Organization has reported 17 cases with 11 deaths, primarily in the Middle East. Although the case count is small, the new coronavirus has transmitted from human-to-human in situations where people—mainly family members—have had close contact with those infected.

Because of the high fatality rate, scientists at NIH's National Institute of Allergy and Infectious Diseases (NIAID) saw an urgent need to identify therapeutic options. In laboratory tests using cells from two species of monkey, the researchers found that either ribavirin or interferon-alpha 2b, drugs currently approved for hepatitis C therapy, inhibited nCoV from replicating when used individually. However, the required drug concentrations exceeded what is recommended for people. By combining the two antivirals, the scientists established an effective treatment dose at a drug level that is achievable in people. The NIAID researchers plan to confirm these results in a recently developed monkey model of nCoV infection. (http://www.niaid.nih.gov/news/newsreleases/2013/Pages/NovelCoronavirus.aspx)

ARTICLES:
Falzarano et al. Inhibition of novel human coronavirus-EMC replication by a combination of interferon-alpha2b and ribavirin. Scientific Reports DOI: 10.1038/srep01686 (2013).

Munster et al. Novel Human Coronavirus Causes Pneumonia in a Macaque Model Resembling Human Disease. New England Journal of Medicine DOI: 10.1056/NEJMc1215691 (2013).

Vincent Munster, Ph.D., chief of the virus ecology unit in NIAID's Laboratory of Virology, is leading the NIAID team investigating the new coronavirus.

To schedule interviews, please contact Ken Pekoc, (301) 402-1663, kpekoc@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

NIH...Turning Discovery Into Health

Ken Pekoc | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>