Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treatment for novel coronavirus shows promise in early lab tests

18.04.2013
Interferon and ribavirin inhibit virus replication in cell culture, NIH study finds

National Institutes of Health (NIH) scientists studying an emerging coronavirus have found that a combination of two licensed antiviral drugs, ribavirin and interferon-alpha 2b, can stop the virus from replicating in laboratory-grown cells.


This is a transmission electron micrograph of the novel coronavirus.
Credit: NIAID/RML

These results suggest that the drug combination could be used to treat patients infected with the new coronavirus, but more research is needed to confirm this preliminary finding. The study appears in the April 18, 2013, issue of Scientific Reports.

The new coronavirus, called nCoV, was first identified in Saudi Arabia in September 2012. As of April 16, 2013, the World Health Organization has reported 17 cases with 11 deaths, primarily in the Middle East. Although the case count is small, the new coronavirus has transmitted from human-to-human in situations where people—mainly family members—have had close contact with those infected.

Because of the high fatality rate, scientists at NIH's National Institute of Allergy and Infectious Diseases (NIAID) saw an urgent need to identify therapeutic options. In laboratory tests using cells from two species of monkey, the researchers found that either ribavirin or interferon-alpha 2b, drugs currently approved for hepatitis C therapy, inhibited nCoV from replicating when used individually. However, the required drug concentrations exceeded what is recommended for people. By combining the two antivirals, the scientists established an effective treatment dose at a drug level that is achievable in people. The NIAID researchers plan to confirm these results in a recently developed monkey model of nCoV infection. (http://www.niaid.nih.gov/news/newsreleases/2013/Pages/NovelCoronavirus.aspx)

ARTICLES:
Falzarano et al. Inhibition of novel human coronavirus-EMC replication by a combination of interferon-alpha2b and ribavirin. Scientific Reports DOI: 10.1038/srep01686 (2013).

Munster et al. Novel Human Coronavirus Causes Pneumonia in a Macaque Model Resembling Human Disease. New England Journal of Medicine DOI: 10.1056/NEJMc1215691 (2013).

Vincent Munster, Ph.D., chief of the virus ecology unit in NIAID's Laboratory of Virology, is leading the NIAID team investigating the new coronavirus.

To schedule interviews, please contact Ken Pekoc, (301) 402-1663, kpekoc@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

NIH...Turning Discovery Into Health

Ken Pekoc | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>