Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The battle for iron: Understanding anaemias of the chronically ill

09.02.2015

When we think of how we fight disease, the image of cells in our immune system fending off microbial invaders often comes to mind. Another strategy our bodies can employ is to cut off the enemy’s supply lines and effectively starve disease-causing microbes of the iron they need to function.

However, this tactic can backfire and cause anaemia if the iron-starved state is sustained for too long, a common problem in chronically ill patients. The search for therapies against this anaemia of chronic disease (ACD) could take on new directions thanks to a study published today in Blood.


A new way mice keep iron (purple) out of reach of pathogens. IMAGE FROM GUIDA et al. BLOOD 2015

In it, scientists in the Molecular Medicine Partnership Unit, a joint venture of the European Molecular Biology Laboratory (EMBL) and Heidelberg University Clinic, both in Heidelberg, Germany, have found a hitherto unknown way through which mice starve pathogens of iron.

Mammals keep iron out of reach of invading microbes by storing it in cells like macrophages – white blood cells which, among other things, normally ‘recycle’ the iron from red blood cells back into the bloodstream. When the body is under attack, macrophages respond by decreasing levels of their iron-exporter, ferroportin, thereby sequestering the iron.

Scientists knew this decrease in ferroportin could be achieved by increasing levels of hepcidin, a hormone which regulates iron levels. But Claudia Guida, a PhD student in the group jointly led by Matthias Hentze at EMBL and Martina Muckenthaler at Heidelberg University Clinic, found that ferroportin can be dialled down independently of hepcidin, by triggering responses from TLR2 and TLR6, two molecules our immune system uses to detect bacterial components.

“Until now, the main approach to develop treatments for anaemia of chronic disease was to look for anti-hepcidin therapies,” says Hentze. “Our findings provide an alternative approach, which is especially relevant because not all patients with anaemia of chronic disease have increased hepcidin levels.”

Why do these cells have two ways of decreasing ferroportin levels? “It could be that this is such an important response, that organisms have evolved a fail-safe, so that if one response fails, they have the other; or it could be a way of broadening the spectrum of what you’re protected against: the hepcidin response might be triggered by some pathogens, and the TLR2/TLR6 response could be activated by others,” says Muckenthaler, “or it could be that this TLR2/TLR6 response we found is a first line of defense, and then the hepcidin response ‘kicks in’ later.”

Hentze, Muckenthaler and colleagues are now investigating exactly what causes ferroportin levels to decrease when TLR2 and TLR6 are activated. As well as informing the search for therapies, this could one day help to develop tests to determine if a patient’s anaemia is caused by problems in his or her TLR2/TLR6 response.

Published online in Blood on 6 February 2015. DOI: 10.1182/blood-2014-08-595256.
For images and more information please visit: http://s.embl.org/EMBLpr060215


Policy regarding use

EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.


Sonia Furtado Neves
EMBL Press Officer & Deputy Head of Communications
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de
http://s.embl.org/press

Sonia Furtado Neves | European Molecular Biology Laboratory

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>