Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The battle for iron: Understanding anaemias of the chronically ill

09.02.2015

When we think of how we fight disease, the image of cells in our immune system fending off microbial invaders often comes to mind. Another strategy our bodies can employ is to cut off the enemy’s supply lines and effectively starve disease-causing microbes of the iron they need to function.

However, this tactic can backfire and cause anaemia if the iron-starved state is sustained for too long, a common problem in chronically ill patients. The search for therapies against this anaemia of chronic disease (ACD) could take on new directions thanks to a study published today in Blood.


A new way mice keep iron (purple) out of reach of pathogens. IMAGE FROM GUIDA et al. BLOOD 2015

In it, scientists in the Molecular Medicine Partnership Unit, a joint venture of the European Molecular Biology Laboratory (EMBL) and Heidelberg University Clinic, both in Heidelberg, Germany, have found a hitherto unknown way through which mice starve pathogens of iron.

Mammals keep iron out of reach of invading microbes by storing it in cells like macrophages – white blood cells which, among other things, normally ‘recycle’ the iron from red blood cells back into the bloodstream. When the body is under attack, macrophages respond by decreasing levels of their iron-exporter, ferroportin, thereby sequestering the iron.

Scientists knew this decrease in ferroportin could be achieved by increasing levels of hepcidin, a hormone which regulates iron levels. But Claudia Guida, a PhD student in the group jointly led by Matthias Hentze at EMBL and Martina Muckenthaler at Heidelberg University Clinic, found that ferroportin can be dialled down independently of hepcidin, by triggering responses from TLR2 and TLR6, two molecules our immune system uses to detect bacterial components.

“Until now, the main approach to develop treatments for anaemia of chronic disease was to look for anti-hepcidin therapies,” says Hentze. “Our findings provide an alternative approach, which is especially relevant because not all patients with anaemia of chronic disease have increased hepcidin levels.”

Why do these cells have two ways of decreasing ferroportin levels? “It could be that this is such an important response, that organisms have evolved a fail-safe, so that if one response fails, they have the other; or it could be a way of broadening the spectrum of what you’re protected against: the hepcidin response might be triggered by some pathogens, and the TLR2/TLR6 response could be activated by others,” says Muckenthaler, “or it could be that this TLR2/TLR6 response we found is a first line of defense, and then the hepcidin response ‘kicks in’ later.”

Hentze, Muckenthaler and colleagues are now investigating exactly what causes ferroportin levels to decrease when TLR2 and TLR6 are activated. As well as informing the search for therapies, this could one day help to develop tests to determine if a patient’s anaemia is caused by problems in his or her TLR2/TLR6 response.

Published online in Blood on 6 February 2015. DOI: 10.1182/blood-2014-08-595256.
For images and more information please visit: http://s.embl.org/EMBLpr060215


Policy regarding use

EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.


Sonia Furtado Neves
EMBL Press Officer & Deputy Head of Communications
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de
http://s.embl.org/press

Sonia Furtado Neves | European Molecular Biology Laboratory

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>