Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test could give SLE patients a more tolerable life

09.05.2011
Five million people worldwide suffer from the chronic rheumatic disease SLE, systemic lupus erythematosus.

Together with rheumatologists, researchers at Lund University in Sweden are on the way to developing a new test that could resolve a number of question marks surrounding the disease and in the long run improve the lives of SLE patients. Their research is published in the next issue of the respected journal Molecular and Cellular Proteomics.

“At present, it can take up to a year before a patient is diagnosed with SLE. This is because the symptoms are diffuse and are often mistaken for other diseases. However, with this blood-based test, it is possible to determine quickly whether someone has the disease or not”, says Christer Wingren, associate professor in Immunotechnology at CREATE Health, Lund University.

The test can also determine how far the disease has progressed. There are three different variants of SLE, and all require different treatment. With current methods, it is often difficult to find out which variant a patient has, which makes it difficult for doctors to prescribe the right medication. A third advantage of the new technique is that it also makes it possible to predict when the disease will become active.

... more about:
»Immunotechnology »Lund »SLE »health services

“Characteristic of SLE is that the disease goes in waves, or flares. Without warning, the disease can flare up and put the patient out of action for a long time. With our test, we hope to be able to predict when an episode is about to happen and in this way prevent it using the right medication”, explains Christer Wingren.

If all goes well, hospitals could start using the technique in two to three years.

The test itself comprises a small chip, smaller than a little fingernail, on which the researchers create a grid pattern, known as an array, using specially selected antibodies. The antibodies serve as ‘capture molecules’; by placing a drop of blood on the chip, the antibodies bind the proteins, or biomarkers, in the body. In this way, a unique ‘fingerprint’ is produced for each patient, which reflects the disease.

“In our article, we show which pattern of biomarkers (the ‘fingerprint’) to look for. From a technical point of view, we get a large number of data signals that say whether the marker is present and in what quantity. These measurements are then entered into a computer, which can present them to the doctors in a way that is easy to understand. It is this fingerprint which doctors could use in the future in clinical practice”, explains Christer Wingren, who has spent most of the past decade developing the technique, and the past two years adapting it for SLE in particular.

According to Christer Wingren, a number of researchers around the world have attempted to develop something similar, but without success. The Lund researchers’ success in the task is partly due to them having found a way to make the antibodies stable and thus more functional. The method has also become highly sensitive.

In order for the research to benefit patients, a number of key biomarker signatures, which form the basis for the test, have been patented. The findings have also been transferred to a newly started company, Immunovia, which was founded by Christer Wingren and three of his colleagues at the Department of Immunotechnology.

The research has its origins in the cancer research that Christer Wingren and a number of other researchers at the translational cancer centre CREATE Health work on. Together with Carl Borrebaeck, Dr Wingren uses an equivalent technological platform that can detect and diagnose different types of cancer. They have very promising data for predicting breast cancer recurrence and diagnosing pancreatic cancer.

For more information, please contact Christer Wingren, associate professor in Immunotechnology, +46 46 222 43 23, +46 706 011856, Christer.Wingren@immun.lth.se, or Gunnar Sturfelt, Professor of Rheumatology, +46 46 17 21 56.

Megan Grindlay | idw
Further information:
http://www.mcponline.org/content/10/5/M110.005033.full.pdf+html

Further reports about: Immunotechnology Lund SLE health services

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>