Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taurine: Key to the visual toxicity of an anti-epileptic drug for children?

19.02.2009
Vigabatrin (Sabril), first intention molecule for the treatment of epilepsy in children, in many cases produces secondary effects that lead to an irreversible loss of vision.

Serge Picaud, head of research at Inserm, and his colleagues of the Institut de la Vision have just discovered the origin of this secondary effect and have proposed strategies for limiting it.

They have shown that vigabatrin provokes a marked decrease in the blood level in an amino acid, taurine, resulting in a degeneration of the retina cells induced by light. The researchers therefore suggest that exposure to light should be reduced and a taurine-rich diet introduced in order to curb immediately these secondary effects in children undergoing treatment. As for the validation of an alternative treatment associating vigabatrin and taurine, this will necessitate several years of development.

This work is published in the review Annals of Neurology.

Epilepsy affects 1% of the world's population. With children, its treatment remains extremely restricted, and vigabatrin, (marketed in France under the name of Sabril®), has obtained marketing authorisation for children aged under 2 years. This anticonvulsant, which is also administered to adults in the case of failure of other treatments, is at the same time now being evaluated for the treatment of addiction to heroin, cocaine and methamphetamines.

However, the serious secondary effects of this drug can induce an impairment of the retina and a restriction of the visual field, noted, depending on the studies, in 10% to 40% of patients.

In order to reach an understanding of this drug's modes of actions, and in particular the mechanism of visual function impairment, the Inserm researchers first of all administered vigabatrin to rats over a period of several months and analysed the influence of exposure to light during the treatment. The results show that there is no damage to the retina when the animals are kept in the dark throughout the treatment.

Moreover, since previous work had shown that a deficiency of the organism in taurine (amino acid) triggers the degeneration of the photoreceptors (cells of the retina converting light into nervous signals), the researchers measured, in rodents, the plasma level of 19 amino acids. Whereas the concentration was identical for most of the amino acids in animals under vigabatrin and in non-treated rats, the taurine level turned out to be 67% lower in treated animals

Taurine is essentially contributed by diet. By providing certain of the animals under treatment with a taurine supplementation, the researchers noted that their visual acuity was greater than that of the animals without supplementation. In addition, the amino acid doses administered to six children subject to regular attacks of epilepsy and treated under vigabatrin reveal a taurine level that is far below the normal values reported for children of the same age – and in some cases even undetectable.

On the strength of these various tests, the scientists were able to prove that vigabatrin induces a pronounced reduction of the taurine level in the plasma. This marked fall is responsible for the degeneration of the photoreceptors and thus for the retinal toxicity in the animals exposed to light.

Pending confirmation in the human of the interest of providing patients under vigabatrin with a taurine supplementation, the researchers propose immediate solutions designed to limit the secondary effects in these patients. "In the first instance, care should therefore be taken to ensure that patients under vigabatrin consume a sufficient amount of food containing taurine. It is also important that they should be exposed to as little light as possible (e.g.; no night lights in a baby's bedroom at night) and should be induced to wear sunglasses", says Serge Picaud.

The researchers also emphasise that any taurine supplementation must be subject to medical advice.

To find out more:

Firas Jammoul MD1,2, Qingping Wang MD1,2,3, Rima Nabbout MD4,5,6, Caroline Coriat MD1,2, Agnès Duboc PhD1,2, Manuel Simonutti1,2, Elisabeth Dubus1,2, Cheryl M. Craft PhD7, Wen Ye MD3, Stephen D. Collins MD PhD8 , Olivier Dulac MD4,5,6, Catherine Chiron MD4,5,6, José A. Sahel MD1,2,9,10, Serge Picaud PhD1,2,10,11
1 Inserm, U592, Institut de la Vision, Paris, France
2 Université Pierre et Marie Curie-Paris6, UMR-S 592, Paris, France ;3 Fudan University, Ophthalmology Department, Huashan Hospital, Shanghai, China
4 Inserm, U663, Paris, France
5 University Rene Descartes, Paris V, Paris, France
6 APHP, Hopital Necker, Service de Neuropédiatrie, Paris, France
7Ophthalmology and Cell & Neurobiology Departments, Keck School of Medicine of the University of Southern California, and The Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, Los Angeles, USA
8 Ovation Pharmaceuticals, Deerfield, USA
9 Centre Hospitalier National d'Ophtalmologie des quinze-vingts, Paris, France;
10Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
11Assistance Publique-Hopitaux de Paris, France
Annals of neurology DOI: http://dx.doi.org/10.1002/ana.21526
Published Online: 4 Feb 2009
Research contacts:
Serge Picaud
Institut de la Vision,
Email : serge.picaud@inserm.fr

Priscille Riviere | EurekAlert!
Further information:
http://www.inserm.fr

Further reports about: Epilepsy Heroin Inserm MD1 Sabril Taurine Vigabatrin amino acid cocaine methamphetamines retina cells taurine-rich diet

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>