Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting the Blood-Brain Barrier May Delay Progression of Alzheimer’s Disease

13.04.2010
Researchers may be one step closer to slowing the onset and progression of Alzheimer’s disease.

An animal study supported by the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health, shows that by targeting the blood-brain barrier, researchers are able to slow the accumulation of a protein associated with the progression of the illness.

The blood-brain barrier separates the brain from circulating blood, and it protects the brain by removing toxic metabolites and proteins formed in the brain and preventing entry of toxic chemicals from the blood.

“This study may provide the experimental basis for new strategies that can be used to treat Alzheimer’s patients,” said David S. Miller, Ph.D., chief of the Laboratory of Toxicology and Pharmacology at NIEHS and an author on the paper that appears in the May issue of Molecular Pharmacology.

Alzheimer’s is an irreversible, progressive brain disease that slowly destroys memory and thinking skills, and eventually disrupts function of major organs. Estimates vary, but experts suggest that as many as 2.6 million to 5.1 million Americans may have Alzheimer’s. One hallmark of Alzheimer’s is the deposition of beta-amyloid protein in the brain. This protein clumps to form plaques that destroy neurons and lead to cognitive impairment and memory loss in Alzheimer patients.

“What we’ve shown in our mouse models is that we can reduce the accumulation of beta-amyloid protein in the brain by targeting a certain receptor in the brain known as the pregnane X receptor, or PXR,” said Miller.

The researchers from NIEHS and the University of Minnesota Duluth demonstrated that when 12-week-old genetically modified mice expressing human beta-amyloid protein are treated with a steroid-like chemical that activates PXR, the amount of beta-amyloid protein in the brain is reduced. The activation of the PXR was found to increase the expression of a blood-brain barrier protein known as P-glycoprotein. This protein transports beta-amyloid out of the brain.

“Our results show several new findings. We now know that P-glycoprotein plays a pivotal role in clearing beta-amyloid from the brain. Secondly, we know P-glycoprotein levels are reduced in the blood-brain barrier, and that the Alzheimer’s mice treated with the chemical to activate PXR were able to reduce their beta-amyloid levels to that of mice without Alzheimer’s,” said Bjorn Bauer, Ph.D., assistant professor at the University of Minnesota and senior author on the paper.

Anika Hartz, Ph.D., lead author on the study, added that it is also likely that reduced P-glycoprotein expression at the blood-brain barrier may be an early indicator of Alzheimer’s disease, even before the cognitive symptoms appear. One of the challenges confronting the diagnosis and treatment of Alzheimer’s is being able to clearly diagnose the disease process when brain damage is minimal, before any symptoms occur.

“More research is needed before this animal model discovery can be tested in humans, but the paper suggests some new targets for treatment that offer hope to patients and families dealing with this devastating disease,” said NIEHS Director Linda Birnbaum, Ph.D.

The researchers plan to conduct a study where the Alzheimer’s mice are fed a PXR-activating compound in their diet for 12-18 months. The cognitive skills of the animals will be monitored regularly, along with their P-glycoprotein levels, to determine whether the feeding regimen delays the onset of cognitive impairment.

The NIEHS supports research to understand the effects of the environment on human health and is part of NIH. For more information on environmental health topics, visit our Web site at http://www.niehs.nih.gov. Subscribe to one or more of the NIEHS news lists (http://www.niehs.nih.gov/news/releases/newslist/index.cfm) to stay current on NIEHS news, press releases, grant opportunities, training, events, and publications.

The National Institutes of Health (NIH) — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Reference(s): Hartz AM, Miller DS, Bauer, B. 2010. Restoring Blood-Brain Barrier P-glycoprotein Reduces Brain Abeta in a Mouse Model of Alzheimer’s Disease. Mol Pharmacol. Online January 25, 2010.doi:10.1124/mol.109.061754.

Robin Mackar | Newswise Science News
Further information:
http://www.niehs.nih.gov

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>