Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking a 'shine' to heart repair

11.08.2011
Tel Aviv University researcher uses lasers to stimulate stem cells and reduce heart scarring

After a heart attack or stroke, heart scarring can lead to dangerously paper-thin heart walls and a decreased ability to pump blood through the body. Although the heart is unable to completely heal itself, a new treatment developed at Tel Aviv University uses laser-treated bone marrow stem cells to help restore heart function and health.

Combining the therapeutic benefits of low-level lasers — a process called "shining" — and bone marrow stem cells, Prof. Uri Oron of the Department of Zoology at TAU's George S. Wise Faculty of Life Sciences has developed an effective, non-invasive procedure that significantly reduces heart scarring after an ischemic event, in which the heart is injured by a lack of blood supply. When the laser is applied to these cells a few hours after a heart attack, scarring can be reduced by up to 80 percent.

Prof. Oron's innovative method, which was recently reported in the journal Lasers in Surgery and Medicine, is ready for clinical trial.

Sending an SOS signal into the bone marrow

Though the heart is known to contain some stem cells, they have a very limited ability to repair damage caused by a heart attack, says Prof. Oron, and researchers have had to look elsewhere. One of the first efforts to use stem cells to reduce heart scarring involved harvesting them from the bone marrow and inserting them back into the heart muscle, close to the heart's blood supply, but this had limited success.

Prof. Oron, who has long used low level lasers to stimulate stem cells to encourage cell survival and the formation of blood vessels after a heart attack, was inspired to test how laser treatments could also work to heal the heart. He and his fellow researchers tried different methods, including treating the heart directly with low level lasers during surgery, and "shining" harvested stem cells before injecting them back into the body.

But he was determined to find a simpler method. After a low-level laser was "shined" into a person's bone marrow — an area rich in stem cells — the stem cells took to the blood stream, moving through the body and responding to the heart's signals of distress and harm, Prof. Oron discovered. Once in the heart, the stem cells used their healing qualities to reduce scarring and stimulate the growth of new arteries, leading to a healthier blood flow.

To determine the success of this method, Prof. Oron performed the therapy on an animal model. Following the flow of bone marrow stem cells through the use of a fluorescent marker, the researchers saw an increase in stem cell population within the heart, specifically in the injured regions of the heart. The test group that received the shining treatment showed a vastly higher concentration of cells in the injured organ than those who had not been treated with the lasers.

In the longer run, Prof. Oron sees this as a way to make cell therapy simpler. Without the need to remove the stem cells from the body, this treatment stimulates a whole variety of stem cells to help heal the body — a "cocktail" ultimately more efficient than single-cell type treatments. This could prove to be beneficial to the repair of other human organs such as the kidney or the liver, he notes.

A safe and painless procedure

Although stem cells naturally heed the call to heal throughout the body, says Prof. Oron, their success tends to be limited without this laser treatment. But with treatment, the cells' effectiveness become much more highly enhanced.

"After we stimulate the cells with the laser and enhance their proliferation in the bone marrow, it's likely that more cells will migrate into the bloodstream. The cells that eventually reach the heart secrete growth factors to a higher extent, and new blood vessel formation is encouraged," Prof. Oron theorizes.

Through these animal models, Prof. Oron's non-invasive procedure has been proven safer and quicker than other options. He says that his team, including TAU's Dr. Hana Tuby and Lidya Maltz, has also done a series of safety studies to rule out the possibility that the stimulation of the stem cells by laser could encourage the growth of abnormal tissues. Under the specific and low doses of energy applied in this technique, no such dangers were found.

American Friends of Tel Aviv University (www.aftau.org) supports Israel's leading, most comprehensive and most sought-after center of higher learning. Independently ranked 94th among the world's top universities for the impact of its research, TAU's innovations and discoveries are cited more often by the global scientific community than all but 10 other universities.

Internationally recognized for the scope and groundbreaking nature of its research and scholarship, Tel Aviv University consistently produces work with profound implications for the future.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>