Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tactic for controlling blood sugar in diabetes contradicts current view of the disease

05.09.2011
Study finds inflammation may be part of the solution, not the problem

Increased low-grade inflammation in the body resulting from obesity is widely viewed as contributing to type 2 diabetes. Going against this long-held belief, researchers from Children's Hospital Boston report that two proteins activated by inflammation are actually crucial for maintaining good blood sugar levels – and that boosting the activity of these proteins can normalize blood sugar in severely obese and diabetic mice.

The research, led by Umut Ozcan, MD, in the Division of Endocrinology at Children's, is reported in the October issue of Nature Medicine, published online September 4.

"This finding is completely contrary to the general dogma in the diabetes field that low-grade inflammation in obesity causes insulin resistance and type 2 diabetes," says Ozcan. "For 20 years, this inflammation has been seen as detrimental, whereas it is actually beneficial."

Ozcan's team previously showed that obesity places stress on the endoplasmic reticulum (ER), a structure in the cell where proteins are assembled, folded and dispatched to do jobs for the cell. This so-called "ER stress" impairs the body's response to insulin in maintaining appropriate blood glucose levels, and is a key link between obesity and type 2 diabetes. Last year, Ozcan and colleagues showed that a protein that relieves ER stress, called XBP1s, cannot function in obese mice. Earlier this year, they showed that activating XBP1s artificially in the liver normalized high blood sugar in obese, insulin-resistant type 2 diabetic mice (as well as lean, insulin-deficient type 1 diabetic mice).

The new study shows that a second protein triggered by inflammatory signals, p38 MAPK, chemically alters XBP1s, enhancing its activity -- and that without these alterations, XBP1s cannot function to maintain normal glucose levels. The study further showed that obese mice have reduced p38 MAPK activity, and that re-activating p38 MAPK in the liver reduced their ER stress, increased insulin sensitivity and glucose tolerance, and significantly reduced blood glucose levels.

Together, the findings suggest that either increasing p38 MAPK activity -- despite its being an inflammatory signal -- or increasing XBP-1 activity by other means could represent new therapeutic options for diabetes.

The study also suggests a new model for understanding type 2 diabetes, in which obesity may interfere with the ability of people's cells to respond to inflammatory signals. "It may be that inflammatory pathways are not working optimally and there could be a resistance to cytokines which mediates the inflammation," Ozcan says. "This could be a paradigm shift for the field."

The researchers also raise a possible down side in using p38 MAPK inhibitors to treat inflammatory diseases such as Crohn's disease, psoriasis and asthma. "These therapeutic approaches should … be evaluated within the context of our results, and in light of the possibility that inhibition of XBP1s activity also decreases the ability of the cell to cope with the inflammatory conditions," they write.

The study (doi:10.1038/nm.2449) was supported by the National Institutes of Health and the Timothy Murphy funds provided to the Division of Endocrinology, Children's Hospital Boston. Jaemin Lee, PhD, and Cheng Sun, PhD, were co-first authors on the paper.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including nine members of the National Academy of Sciences, 11 members of the Institute of Medicine and nine members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 396 bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about research and clinical innovation at Children's, visit: http://vectorblog.org.

Children's Hospital Boston | EurekAlert!
Further information:
http://vectorblog.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>