Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprise for stroke researchers

10.03.2010
Strokes are less damaging if certain immune cells are absent in the blood. This previously unknown mechanism will be presented by researchers from the University of Würzburg in the science journal "Blood".

Someone in Germany suffers a stroke every two minutes. The cause is usually a blockage in the blood vessels that supply the brain. Anyone who survives a stroke may sustain severe disabilities, such as impaired speech or paralyses; the reason being that the brain is damaged because it was deprived of sufficient blood for too long.

The blood vessels tend to be blocked by clotted blood. Dissolving these clots or stopping them from occurring in the first place is the primary objective in the treatment and prevention of strokes.

Consequently, the search for new and better therapies starts where the cause of the illness lies: with the blood coagulation that leads to the formation of clots. The Würzburg scientists were all the more astonished, then, when they made a discovery elsewhere - the T cells of the immune system also play a role in strokes. These are actually the cells responsible for combating pathogens.

T cells have a damaging effect

What exactly did the researchers discover? Mice with no T cells due to a genetic defect suffer less severe strokes than their normal fellow mice. What is more, they develop fewer symptoms of neurological deficiencies, such as paralyses, after a stroke. This means that T cells have a negative effect on the progression of a stroke. This has been proven by the working groups of Guido Stoll, Christoph Kleinschnitz, and Heinz Wiendl from the university's Department of Neurology together with Bernhard Nieswandt from the Rudolf Virchow Center for Experimental Biomedicine.

"The fact that T cells have such a damaging effect in the case of acute strokes came as a complete surprise to us," reports Christoph Kleinschnitz. The adverse effect can be traced back to two sub-groups of immune cells, the so-called CD4- and CD8-positive T helper cells.

But do the T cells intensify a stroke? The Würzburg scientists were able to rule out two possible mechanisms in their experiments. Firstly, the T cells do not promote the agglutination of the blood platelets or, therefore, the formation of blood clots. "Secondly, they do not fuel the process either in the form of a specific immune reaction," says neuroimmunologist Heinz Wiendl. Further research is now needed to clarify how the T cells exercise their damaging effect.

New approaches to therapy conceivable

The Würzburg researchers hope that their work will help improve stroke therapy for humans. If the findings can be transferred to people, it might be possible to devise new approaches by purposefully manipulating the T cells. It is conceivable, for example, that in the early stages of a stroke the harmful fraction of the T cells may be deactivated temporarily to thereby reduce the symptoms of deficiencies. "But further studies are needed before we reach that point," says neurologist Guido Stoll.

Results achieved in two collaborative research centers

These research findings have been made in the Würzburg collaborative research centers 688 and 581. Both are funded by the German Research Foundation (DFG). The results now are published in the online issue of Blood, the Journal of the American Society of Hematology.

Christoph Kleinschnitz, Nicholas Schwab, Peter Kraft, Ina Hagedorn, Angela Dreykluft, Tobias Schwarz, Madeleine Austinat, Bernhard Nieswandt, Heinz Wiendl, and Guido Stoll: "Early detrimental T cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation." Blood First Edition Paper, prepublished online March 9, 2010; DOI 10.1182/blood-2009-10-249078

Further information

Dr. Christoph Kleinschnitz, T +49 (0)931 201-23765, christoph.kleinschnitz@uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>