Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprise for stroke researchers

10.03.2010
Strokes are less damaging if certain immune cells are absent in the blood. This previously unknown mechanism will be presented by researchers from the University of Würzburg in the science journal "Blood".

Someone in Germany suffers a stroke every two minutes. The cause is usually a blockage in the blood vessels that supply the brain. Anyone who survives a stroke may sustain severe disabilities, such as impaired speech or paralyses; the reason being that the brain is damaged because it was deprived of sufficient blood for too long.

The blood vessels tend to be blocked by clotted blood. Dissolving these clots or stopping them from occurring in the first place is the primary objective in the treatment and prevention of strokes.

Consequently, the search for new and better therapies starts where the cause of the illness lies: with the blood coagulation that leads to the formation of clots. The Würzburg scientists were all the more astonished, then, when they made a discovery elsewhere - the T cells of the immune system also play a role in strokes. These are actually the cells responsible for combating pathogens.

T cells have a damaging effect

What exactly did the researchers discover? Mice with no T cells due to a genetic defect suffer less severe strokes than their normal fellow mice. What is more, they develop fewer symptoms of neurological deficiencies, such as paralyses, after a stroke. This means that T cells have a negative effect on the progression of a stroke. This has been proven by the working groups of Guido Stoll, Christoph Kleinschnitz, and Heinz Wiendl from the university's Department of Neurology together with Bernhard Nieswandt from the Rudolf Virchow Center for Experimental Biomedicine.

"The fact that T cells have such a damaging effect in the case of acute strokes came as a complete surprise to us," reports Christoph Kleinschnitz. The adverse effect can be traced back to two sub-groups of immune cells, the so-called CD4- and CD8-positive T helper cells.

But do the T cells intensify a stroke? The Würzburg scientists were able to rule out two possible mechanisms in their experiments. Firstly, the T cells do not promote the agglutination of the blood platelets or, therefore, the formation of blood clots. "Secondly, they do not fuel the process either in the form of a specific immune reaction," says neuroimmunologist Heinz Wiendl. Further research is now needed to clarify how the T cells exercise their damaging effect.

New approaches to therapy conceivable

The Würzburg researchers hope that their work will help improve stroke therapy for humans. If the findings can be transferred to people, it might be possible to devise new approaches by purposefully manipulating the T cells. It is conceivable, for example, that in the early stages of a stroke the harmful fraction of the T cells may be deactivated temporarily to thereby reduce the symptoms of deficiencies. "But further studies are needed before we reach that point," says neurologist Guido Stoll.

Results achieved in two collaborative research centers

These research findings have been made in the Würzburg collaborative research centers 688 and 581. Both are funded by the German Research Foundation (DFG). The results now are published in the online issue of Blood, the Journal of the American Society of Hematology.

Christoph Kleinschnitz, Nicholas Schwab, Peter Kraft, Ina Hagedorn, Angela Dreykluft, Tobias Schwarz, Madeleine Austinat, Bernhard Nieswandt, Heinz Wiendl, and Guido Stoll: "Early detrimental T cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation." Blood First Edition Paper, prepublished online March 9, 2010; DOI 10.1182/blood-2009-10-249078

Further information

Dr. Christoph Kleinschnitz, T +49 (0)931 201-23765, christoph.kleinschnitz@uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

A new tool for discovering nanoporous materials

23.05.2017 | Materials Sciences

Two New Giants Discovered in Tiny Madagascar Rainforest

23.05.2017 | Life Sciences

Did you know that packaging is becoming intelligent through flash systems?

23.05.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>