Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supporting early diagnosis of diseases through algorithms for the analysis of human respiration

05.03.2012
Just like urine and blood, breath contains traces of the products of metabolism. Such products can also be signs of infection, inflammation or cancer.
For their analysis, computational bioinformatics researchers at the Cluster of Excellence “Multimodal Computing and Interaction” at Saarland University developed special computer algorithms that can help doctors to make diagnoses quickly and reliably. The researchers will be giving a practical demonstration at Booth 34 in Pavilion 26 at Cebit. The computer fair takes place in Hanover from March 6 to 10.

Jan Baumbach is head of the research group “Computational Systems Biology” at the Cluster of Excellence in Saarbrücken. The group studies how to search efficiently and reliably through huge amounts of biomedical data, created through new analysis techniques, with the help of calculation methods from the field of computer science. In cooperation with the Korea Institute for Science and Technology Europe (KIST Europe), the bioinformatics researchers in Saarbrücken analyze doctors’ examination results from various medical facilities, including clinics in Hemer, Homburg, Essen, Göttingen and Marburg, among others. Through clinical studies, the doctors analyze the respiration of patients with known diseases, such as lung cancer and infections.
“The technique of measurement has been perfected for several years,” Jan Baumbach explains. “Now it’s up to computer science to evaluate the measured results.” His research group believes in calculation methods which are usually applied for machine learning in the field of artificial intelligence. Using these, they try to find models within the measured products of metabolism, so-called metabolites, which can identify the disease in a body like a fingerprint at a crime scene. “The huge problem is that we have a crime scene with millions of possible indicators, of which maybe only two or three are relevant” says Jan Baumbach. Thus, the bioinformatics researchers leave the decision as to which combination of metabolites indicates a disease to the specially-developed classification algorithms. Using the samples – which, for the human viewer, would be impossible to analyze – the algorithms learn training material that aids in automatically placing unknown data reliably into the categories “healthy” or “disease X.”

“Chronic obstructive pulmonary disease (COPD), for example, can be analyzed very accurately, with a failure rate of under 5 percent,” says Jan Baumbach. To be able to put the results to practical use, some more clinical studies have to be performed. However, the scientist is convinced of the success of the idea. In five years, he thinks the necessary hardware will fit into a smart phone, replacing the current 18-kilogram machines. With the appropriate algorithms, bacteria and tumors (for example) could be detected more quickly and reliably, blood glucose levels could be measured through breathing into the smart phone.
Questions are answering:

Dr. Jan Baumbach
Cluster of Excellence „Multimodal Computing and Interaction”
Tel: +49 681 302-70880
E-Mail: jbaumbac@mpi-inf.mpg.de

Gordon Bolduan
Scientific Communication
Cluster of Excellence „Multimodal Computing and Interaction”
Tel: + 49 681 302-70741
E-Mail: bolduan@mmci.uni-saarland.de

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Further information:
http://www.uni-saarland.de
http://www.mmci.uni-saarland.de/en/investigators/irgleaders/jbaumbach

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>