Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supporting early diagnosis of diseases through algorithms for the analysis of human respiration

05.03.2012
Just like urine and blood, breath contains traces of the products of metabolism. Such products can also be signs of infection, inflammation or cancer.
For their analysis, computational bioinformatics researchers at the Cluster of Excellence “Multimodal Computing and Interaction” at Saarland University developed special computer algorithms that can help doctors to make diagnoses quickly and reliably. The researchers will be giving a practical demonstration at Booth 34 in Pavilion 26 at Cebit. The computer fair takes place in Hanover from March 6 to 10.

Jan Baumbach is head of the research group “Computational Systems Biology” at the Cluster of Excellence in Saarbrücken. The group studies how to search efficiently and reliably through huge amounts of biomedical data, created through new analysis techniques, with the help of calculation methods from the field of computer science. In cooperation with the Korea Institute for Science and Technology Europe (KIST Europe), the bioinformatics researchers in Saarbrücken analyze doctors’ examination results from various medical facilities, including clinics in Hemer, Homburg, Essen, Göttingen and Marburg, among others. Through clinical studies, the doctors analyze the respiration of patients with known diseases, such as lung cancer and infections.
“The technique of measurement has been perfected for several years,” Jan Baumbach explains. “Now it’s up to computer science to evaluate the measured results.” His research group believes in calculation methods which are usually applied for machine learning in the field of artificial intelligence. Using these, they try to find models within the measured products of metabolism, so-called metabolites, which can identify the disease in a body like a fingerprint at a crime scene. “The huge problem is that we have a crime scene with millions of possible indicators, of which maybe only two or three are relevant” says Jan Baumbach. Thus, the bioinformatics researchers leave the decision as to which combination of metabolites indicates a disease to the specially-developed classification algorithms. Using the samples – which, for the human viewer, would be impossible to analyze – the algorithms learn training material that aids in automatically placing unknown data reliably into the categories “healthy” or “disease X.”

“Chronic obstructive pulmonary disease (COPD), for example, can be analyzed very accurately, with a failure rate of under 5 percent,” says Jan Baumbach. To be able to put the results to practical use, some more clinical studies have to be performed. However, the scientist is convinced of the success of the idea. In five years, he thinks the necessary hardware will fit into a smart phone, replacing the current 18-kilogram machines. With the appropriate algorithms, bacteria and tumors (for example) could be detected more quickly and reliably, blood glucose levels could be measured through breathing into the smart phone.
Questions are answering:

Dr. Jan Baumbach
Cluster of Excellence „Multimodal Computing and Interaction”
Tel: +49 681 302-70880
E-Mail: jbaumbac@mpi-inf.mpg.de

Gordon Bolduan
Scientific Communication
Cluster of Excellence „Multimodal Computing and Interaction”
Tel: + 49 681 302-70741
E-Mail: bolduan@mmci.uni-saarland.de

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Further information:
http://www.uni-saarland.de
http://www.mmci.uni-saarland.de/en/investigators/irgleaders/jbaumbach

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>