Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Supporting early diagnosis of diseases through algorithms for the analysis of human respiration

Just like urine and blood, breath contains traces of the products of metabolism. Such products can also be signs of infection, inflammation or cancer.
For their analysis, computational bioinformatics researchers at the Cluster of Excellence “Multimodal Computing and Interaction” at Saarland University developed special computer algorithms that can help doctors to make diagnoses quickly and reliably. The researchers will be giving a practical demonstration at Booth 34 in Pavilion 26 at Cebit. The computer fair takes place in Hanover from March 6 to 10.

Jan Baumbach is head of the research group “Computational Systems Biology” at the Cluster of Excellence in Saarbrücken. The group studies how to search efficiently and reliably through huge amounts of biomedical data, created through new analysis techniques, with the help of calculation methods from the field of computer science. In cooperation with the Korea Institute for Science and Technology Europe (KIST Europe), the bioinformatics researchers in Saarbrücken analyze doctors’ examination results from various medical facilities, including clinics in Hemer, Homburg, Essen, Göttingen and Marburg, among others. Through clinical studies, the doctors analyze the respiration of patients with known diseases, such as lung cancer and infections.
“The technique of measurement has been perfected for several years,” Jan Baumbach explains. “Now it’s up to computer science to evaluate the measured results.” His research group believes in calculation methods which are usually applied for machine learning in the field of artificial intelligence. Using these, they try to find models within the measured products of metabolism, so-called metabolites, which can identify the disease in a body like a fingerprint at a crime scene. “The huge problem is that we have a crime scene with millions of possible indicators, of which maybe only two or three are relevant” says Jan Baumbach. Thus, the bioinformatics researchers leave the decision as to which combination of metabolites indicates a disease to the specially-developed classification algorithms. Using the samples – which, for the human viewer, would be impossible to analyze – the algorithms learn training material that aids in automatically placing unknown data reliably into the categories “healthy” or “disease X.”

“Chronic obstructive pulmonary disease (COPD), for example, can be analyzed very accurately, with a failure rate of under 5 percent,” says Jan Baumbach. To be able to put the results to practical use, some more clinical studies have to be performed. However, the scientist is convinced of the success of the idea. In five years, he thinks the necessary hardware will fit into a smart phone, replacing the current 18-kilogram machines. With the appropriate algorithms, bacteria and tumors (for example) could be detected more quickly and reliably, blood glucose levels could be measured through breathing into the smart phone.
Questions are answering:

Dr. Jan Baumbach
Cluster of Excellence „Multimodal Computing and Interaction”
Tel: +49 681 302-70880

Gordon Bolduan
Scientific Communication
Cluster of Excellence „Multimodal Computing and Interaction”
Tel: + 49 681 302-70741

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>