Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New subtype of breast cancer responds to targeted drug

02.03.2010
A newly identified cancer biomarker could define a new subtype of breast cancer as well as offer a potential way to treat it, say researchers at Washington University School of Medicine in St. Louis. Their findings will be published in the March 1 online early edition issue of the Proceedings of the National Academy of Sciences.

The research could further refine what recent breast cancer research has concluded: that breast cancer is not one disease, but many. So far, research has firmly established that at least five subtypes of breast cancer exist, each having distinct biological features, clinical outcomes and responses to traditional therapies.

The biomarker identified by the Washington University researchers is found frequently in breast cancers and especially in those that have poorer outcomes. It stems from overactivation of a gene called LRP6 (low-density lipoprotein receptor-related protein 6), which stimulates an important cell-growth signaling pathway. LRP6 can be inhibited by a protein discovered in the same laboratory, which could become an effective drug against the breast cancer type, the researchers say.

"We found increased expression of the LRP6 gene in about a quarter of breast cancer specimens we examined, and we think LRP6 overexpression could be a marker for a new class of breast cancer," says Guojun Bu, Ph.D., professor of pediatrics and of cell biology and physiology. "In addition, we found that this biomarker is often associated with breast cancers that are either harder to treat or more likely to recur. We already have an agent that seems to be effective against LRP6-overexpressing tumors, which could someday become a therapy for tumors that right now have few treatment options."

The research was conducted primarily by Chia-Chen Liu, a graduate student in the Bu lab, who is a fellow in the Cancer Biology Pathway Program at the Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital.

The researchers' analysis of human breast cancer tissue samples found significant increases in LRP6 levels in 20 percent to 36 percent of the tumors. LRP6 was increased more frequently in ER (estrogen receptor)-negative or HER2 (human epidermal growth factor receptor 2)-negative samples. LRP6 was also increased more frequently in so-called triple-negative breast tumor samples, which test negative for ER, HER2 and PR (progesterone receptor).

In general, patients who have triple-negative breast cancers have an increased risk of disease recurrence after initial treatment and a poorer prognosis. Furthermore, although ER-positive and HER2-positive tumors can be targeted with specific therapies, ER-negative and HER2-negative tumors cannot. So it appears that LRP6 overexpression is often associated with tumors that are currently difficult to treat, says Bu.

Research in the lab had earlier discovered a protein that binds to and inhibits LRP6. This study showed that the protein, called Mesd (mesoderm development), was able to slow the growth of breast cancer cells in the laboratory and to inhibit mammary tumor growth in laboratory mice.

Importantly, mice treated with Mesd did not experience any of the known side effects, such as bone lesions, skin disorders or intestinal malfunctions, associated with inhibition of this growth pathway.

"Our work introduces Mesd as a promising antitumor agent that might be further developed for breast cancer therapy," Bu says. "It would be analogous to such successful breast cancer therapies as Herceptin (trastuzumab), which specifically targets HER2-positive breast cancer."

The researchers also found that a small segment of Mesd has the same effect as the larger molecule. This segment, or peptide, is more stable than the whole protein molecule and can be easily synthesized.

The researchers have patented the protein and the peptide through the university's Office of Technology Management. Recently, Raptor Pharmaceutical Corp. licensed Mesd from the university to develop it for clinical use.

Liu C-C, Prior J, Piwnica-Worms D, Bu G. LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy. Proceedings of the National Academy of Sciences. March 1, 2010 (advance online publication).

Funding from the National Institutes of Health and the Siteman Cancer Center supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Siteman Cancer Center is the only federally designated Comprehensive Cancer Center within a 240-mile radius of St. Louis. Siteman Cancer Center is composed of the combined cancer research and treatment programs of Barnes-Jewish Hospital and Washington University School of Medicine. Siteman has satellite locations in West County and St. Peters, in addition to its full-service facility at Washington University Medical Center on South Kingshighway.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Barnes-Jewish Cancer HER2 HER2-positive LRP6 Medicine Science TV breast cancer cancer research

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>