Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows that insomnia may cause dysfunction in emotional brain circuitry

23.05.2013
A new study provides neurobiological evidence for dysfunction in the neural circuitry underlying emotion regulation in people with insomnia, which may have implications for the risk relationship between insomnia and depression.
“Insomnia has been consistently identified as a risk factor for depression,” said lead author Peter Franzen, PhD, an assistant professor of psychiatry at the University of Pittsburgh School of Medicine. “Alterations in the brain circuitry underlying emotion regulation may be involved in the pathway for depression, and these results suggest a mechanistic role for sleep disturbance in the development of psychiatric disorders.”

The study involved 14 individuals with chronic primary insomnia without other primary psychiatric disorders, as well as 30 good sleepers who served as a control group. Participants underwent an fMRI scan during an emotion regulation task in which they were shown negative or neutral pictures. They were asked to passively view the images or to decrease their emotional responses using cognitive reappraisal, a voluntary emotion regulation strategy in which you interpret the meaning depicted in the picture in order to feel less negative.

Results show that in the primary insomnia group, amygdala activity was significantly higher during reappraisal than during passive viewing. Located in the temporal lobe of the brain, the amygdala plays an important role in emotional processing and regulation.

In analysis between groups, amygdala activity during reappraisal trials was significantly greater in the primary insomnia group compared with good sleepers. The two groups did not significantly differ when passively viewing negative pictures.

“Previous studies have demonstrated that successful emotion regulation using reappraisal decreases amygdala response in healthy individuals, yet we were surprised that activity was even higher during reappraisal of, versus passive viewing of, pictures with negative emotional content in this sample of individuals with primary insomnia,” said Franzen.
The research abstract was published recently in an online supplement of the journal SLEEP, and Franzen will present the findings Wednesday, June 5, in Baltimore, Md., at SLEEP 2013, the 27th annual meeting of the Associated Professional Sleep Societies LLC.

The American Academy of Sleep Medicine reports that about 10 to 15 percent of adults have an insomnia disorder with distress or daytime impairment. According to the National Institute of Mental Health, 6.7 percent of the U.S. adult population suffers from major depressive disorder. Both insomnia and depression are more common in women than in men.
For a copy of the abstract, “Elevated amygdala activation during voluntary emotion regulation in primary insomnia,” to arrange an interview with Dr. Franzen or an AASM spokesperson, or to register for a press pass to attend SLEEP 2013, please contact AASM Communications Coordinator Lynn Celmer at 630-737-9700, ext. 9364, or lcelmer@aasmnet.org.

A joint venture of the American Academy of Sleep Medicine and the Sleep Research Society, the annual SLEEP meeting brings together an international body of more than 5,500 leading clinicians and scientists in the fields of sleep medicine and sleep research. At SLEEP 2013 (www.sleepmeeting.org), more than 1,300 research abstract presentations will showcase new findings that contribute to the understanding of sleep and the effective diagnosis and treatment of sleep disorders such as insomnia, narcolepsy and sleep apnea.

The American Academy of Sleep Medicine considers sleep disorders an illness that has reached epidemic proportions. Board-certified sleep medicine physicians in an AASM-accredited sleep center provide effective treatment. AASM encourages patients to talk to their doctors about sleep problems or visit www.sleepeducation.com for a searchable directory of sleep centers.

Lynn Celmer | EurekAlert!
Further information:
http://www.aasmnet.org

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>