Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study sheds light on cancer-protective properties of milk

04.10.2012
Findings reported in the Journal of Dairy Science

Amsterdam, The Netherlands, October 3, 2012 – Milk consumption has been linked to improved health, with decreased risks of diabetes, metabolic syndrome, and colon cancer. A group of scientists in Sweden found that lactoferricin4-14 (Lfcin4-14), a milk protein with known health effects, significantly reduces the growth rate of colon cancer cells over time by prolonging the period of the cell cycle before chromosomes are replicated.

In a new study, investigators report that treatment with Lfcin4-14 reduced DNA damage in colon cancer cells exposed to ultraviolet (UV) light. Their results are published in the October issue of the Journal of Dairy Science®.

"We previously hypothesized that the prolongation of the cell cycle in colon cancer cells as a result of Lfcin4-14 treatment may give the cells extra time for DNA repair," says one of the lead investigators, Professor Stina Oredsson, of the Department of Biology at the University of Lund, Sweden. "Indeed, UV light-induced damage was decreased in colon cancer cells treated with Lfcin4-14 compared with controls. The differences were small but significant."

Investigators exposed colon cancer cells to UV light that caused DNA damage and then grew the cells in the absence or presence of Lfcin4-14. They evaluated DNA damage using a sensitive technique known as comet assay. After the cells are processed, the cells with DNA damage resemble a comet with a tail, and the intensity of the tail compared to the comet head indicates the number of DNA breaks. UV light exposure resulted in an increase in the number of comets while treatment with Lfcin4-14 reduced the number of comets in UV light-exposed cells.

To understand the mechanism by which Lfcin4-14 reduced DNA damage, investigators evaluated the levels of several proteins involved in cell cycle progression, DNA repair, and cell death. They found an increase in flap endonuclease-1, a protein associated with DNA synthesis; a decrease in b-cell lymphoma 2-associated X protein, which is involved with cell death; and a decrease in the level of -H2AX, indicating more efficient DNA repair. "These changes in expression support our hypothesis that Lfcin4-14 treatment resulted in increased DNA repair," says Dr. Oredsson.

Dr. Oredsson notes that cancer cells, in general, have defects in the DNA repair mechanisms. Thus, Lfcin4-14 may have a greater effect on normal cells than on cancer cells. "Our data suggest that the effects of Lfcin4-14 in prolonging the cell cycle may contribute to the cancer preventive effect of milk. This must be further investigated in different systems," she concludes.

Verity C. Kerkhoff | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>