Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study reveals bitter taste receptors regulate the upper respiratory defense system

09.10.2012
Findings could help uncover novel diagnostic tools and treatments for patients with chronic sinus conditions

A new study from a team of researchers at the Perelman School of Medicine at the University of Pennsylvania, the Monell Chemical Senses Center, and the Philadelphia VA Medical Center, reveals that a person's ability to taste certain bitter flavors is directly related to their ability to fight off upper respiratory tract infections, specifically chronic sinus infections. The new research is published in the latest edition of the Journal of Clinical Investigation.

Most humans experience five types of tastes: sweet, salty, sour, bitter, and savory. The sense of taste is mediated by taste receptor cells which are bundled in our taste buds. "Sour" and "bitter" taste sensations alert the body to harmful foods that have spoiled or are toxic. But based on genetics, up to 25 percent of the population cannot detect certain bitter flavors (non-tasters), 25 percent can detect exceedingly small quantities (super-tasters), and the rest of us fall somewhere between these two extremes.

So what exactly does drinking a cup of bitter coffee have to do with chronic sinus infections, which account for approximately 18-22 million physician visits in the U.S. each year? Recent investigations have shown that these taste receptors (known as T2Rs) are also found in both upper and lower human respiratory tissue, likely signaling a connection between activation of bitter tastes and the need to launch an immune response in these areas when they are exposed to potentially harmful bacteria and viruses.

"With this information in mind, we wanted to better understand the exact role that bitter taste receptors play in the upper airway, especially between these super and non-tasters," says Noam Cohen, MD, PhD, assistant professor of Otorhinolaryngology: Head and Neck Surgery, staff physician at the Philadelphia VAMC, and senior author of the new study.

Cohen and his colleagues formulated the following hypotheses around the connection: (1) bitter taste receptors are functional in the nose (upper respiratory tract), and each receptor detects a specific type of bacteria; (2) upon activation by a specific bacterial product, the bitter taste receptor initiates a local defensive response to combat the attacking bacteria; and (3) genetic variability of the bitter taste receptors alters the vigorousness of the response, thus leaving certain individuals with very strong defenses and others with weak defenses against a specific bacteria.

To test these hypotheses, the team grew cell cultures from sinus and nasal tissue samples collected during sinus surgical procedures. These cultures develop cilia, produce mucus, and reflect many of the defensive workings found inside the nose and sinuses.

They found that one of the bitter taste receptors that functions in upper airway cells, known as T2R38, acts as a type of "security guard" for the upper airway by detecting molecules that a certain class of bacteria secretes. "These molecules instruct other bacteria to form a biofilm, which helps harbor the bacteria. From previous work, we know that these biofilms spur the immune system to mount an over-exuberant inflammatory response that can lead to sinusitis symptoms. When the T2R38 receptor detects these molecules, it activates local defensive maneuvers to increase mucus clearance and kill the invading bacteria. It's really like modern warfare – intercept the enemies' early communications to thwart their plans and win the battle," Cohen said.

Through the cultures, the research team demonstrated that super-tasters detect very small concentrations of the offending molecules, while non-tasters and the middle-ground individuals require 100 times more of the molecule for detection. The research team also examined the patients that the original sinus tissue samples were collected from. They found that none of the super tasters were infected with the specific type of bacteria that are detected by the T2R38 receptor, known as a gram-negative bacteria.

"Based on these findings, we believe that other bitter taste receptors in the airway perform the same "guard duty" function for early detection of attack by different types of bacteria, and we hope to translate these findings into personalized diagnostics for patients with chronic rhinosinusitis," Cohen says.

The research team is also using the results of the current study to develop a simple "taste-test" protocol to be conducted during clinic visits. "We're optimistic that a test of this nature will help us predict who is at risk to develop biofilms based on their ability to taste various bitter compounds. Additionally, we are looking at therapeutic outcomes, both surgical and medical, based on the taster/non-taster genetic status to determine whether knowing this status will stratify patients to either surgical or medical interventions."

Other study authors from Penn include Robert J. Lee (first author), Jennifer M. Kofonow, Bei Chen, Laurel Doghramji, Nithin D. Adappa, James N. Palmer, David W. Kennedy, Paschalis-Thomas Doulias, and Harry Ischiropoulos.

Funding for the study came from the Flight Attendants Medical Research Institute 082478 (NAC), and a philanthropic contribution from the RLG Foundation, Inc. (NAC), as well as several grants from the National Institute on Deafness and Other Communication Disorders to the Monell collaborators.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Jessica Mikulski | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>