Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study links water pollution with declining male fertility

21.01.2009
New research strengthens the link between water pollution and rising male fertility problems.

The study, by Brunel University, the Universities of Exeter and Reading and the Centre for Ecology & Hydrology, shows for the first time how a group of testosterone-blocking chemicals is finding its way into UK rivers, affecting wildlife and potentially humans. The research was supported by the Natural Environment Research Council and is now published in the journal Environmental Health Perspectives.

The study identified a new group of chemicals that act as ‘anti-androgens’. This means that they inhibit the function of the male hormone, testosterone, reducing male fertility. Some of these are contained in medicines, including cancer treatments, pharmaceutical treatments, and pesticides used in agriculture. The research suggests that when they get into the water system, these chemicals may play a pivotal role in causing feminising effects in male fish.

Earlier research by Brunel University and the University of Exeter has shown how female sex hormones (estrogens), and chemicals that mimic estrogens, are leading to ‘feminisation’ of male fish. Found in some industrial chemicals and the contraceptive pill, they enter rivers via sewage treatment works. This causes reproductive problems by reducing fish breeding capability and in some cases can lead to male fish changing sex.

Other studies have also suggested that there may be a link between this phenomenon and the increase in human male fertility problems caused by testicular dysgenesis syndrome. Until now, this link lacked credence because the list of suspects causing effects in fish was limited to estrogenic chemicals whilst testicular dysgenesis is known to be caused by exposure to a range of anti-androgens.

Lead author on the research paper, Dr Susan Jobling at Brunel University’s Institute for the Environment, said: “We have been working intensively in this field for over ten years. The new research findings illustrate the complexities in unravelling chemical causation of adverse health effects in wildlife populations and re-open the possibility of a human – wildlife connection in which effects seen in wild fish and in humans are caused by similar combinations of chemicals. We have identified a new group of chemicals in our study on fish, but do not know where they are coming from. A principal aim of our work is now to identify the source of these pollutants and work with regulators and relevant industry to test the effects of a mixture of these chemicals and the already known environmental estrogens and help protect environmental health.”

Senior author Professor Charles Tyler of the University of Exeter said: ”Our research shows that a much wider range of chemicals than we previously thought is leading to hormone disruption in fish. This means that the pollutants causing these problems are likely to be coming from a wide variety of sources. Our findings also strengthen the argument for the cocktail of chemicals in our water leading to hormone disruption in fish, and contributing to the rise in male reproductive problems. There are likely to be many reasons behind the rise in male fertility problems in humans, but these findings could reveal one, previously unknown, factor.”

Bob Burn, Principal Statistician in the Statistical Services Centre at the University of Reading, said: ”State-of- the- art statistical hierarchical modelling has allowed us to explore the complex associations between the exposure and potential effects seen in over 1000 fish sampled from 30 rivers in various parts of England.”

The research took more than three years to complete and was conducted by the University of Exeter, Brunel University, University of Reading and the Centre for Ecology & Hydrology. Statistical modelling was supported by Beyond the Basics Ltd.

The research team is now focusing on identifying the source of anti-androgenic chemicals, as well as continuing to study their impact on reproductive health in wildlife and humans.

Sarah Hoyle | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>