Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study finds new role for protein in hearing

A protein involved in sound sensing in the inner ear may also play a role in transmitting sound information to the brain; the protein -- harmonin -- is mutated in Usher syndrome, one of the most common forms of deaf-blindness in humans

University of Iowa scientists have discovered a new role for a protein that is mutated in Usher syndrome, one of the most common forms of deaf-blindness in humans. The findings, which were published Aug. 8 in Nature Neuroscience, may help explain why this mutation causes the most severe form of the condition.

The study suggests that the protein called harmonin, which is known to be involved in sound sensing in the inner ear, may also play a role in the transmission of sound information to the brain.

Hearing starts with the transmission of sound by inner hair cells in the ear. Sound waves cause movement of special structures called stereocilia on the tips of the hair cells. Harmonin is thought to mediate this movement, which then activates the cells and initiates transmission of sound information as electrical and chemical signals to the brain.

"Most of the research until now has concentrated on the input end of the inner hair cells where the sound waves produce motion of the stereocilia," said Amy Lee, Ph.D., senior study author and UI associate professor in the Departments of Molecular Physiology and Biophysics, Otolaryngology-Head and Neck Surgery, and Neurology. "Now we have found a new role for harmonin at the opposite end of these sound-sensing inner hair cells where it appears to control the signal output of the cell."

Lee and colleagues, including UI postdoctoral fellows Frederick Gregory, Ph.D., and Keith Bryan, Ph.D., found that harmonin is important for regulating the number of calcium channels present at the sound-transmitting synapse of inner hair cells.

Studies from other labs have shown that too few or too many calcium channels at the hair cell synapse cause deafness in mice. This means factors that control how many channels are available are likely to be important for normal hearing.

"Harmonin appears to precisely control how many channels are available," Lee said. "What we think is happening in Usher syndrome where the harmonin protein is mutated is that there are too many calcium channels available, which causes abnormal signaling at the synapses.

"We are most excited about the idea that this mutation could contribute to the disease process of Usher syndrome in a way that was not imagined before," Lee added. "It may eventually be possible to alter this interaction between harmonin and the calcium channels in a way that might be useful as a therapy for patients with this form of Usher syndrome."

Harmonin is also expressed in the retina -- the light-sensitive tissue in the eye -- which is affected in Usher syndrome, and there are calcium channels in the photoreceptor cells of the retina. It is not known how the harmonin mutation affects the retina and how it might contribute to blindness in Usher syndrome, but that is another area of research Lee's team hopes to investigate.

In addition to Lee, Gregory and Bryan, the research team included Tina Pangrsic and Tobias Moser at the University of Goettingen, Germay, and Irina Calin-Jageman at Dominican University, River Forest, Ill.

The study was funded in part by grants from the National Institutes of Health and the Deafness Research Foundation.

STORY SOURCE: University of Iowa Health Care Media Relations, 200 Hawkins Drive, Room W319 GH, Iowa City, Iowa 52242-1009

MEDIA CONTACT: Jennifer Brown, 319-356-7124,

Jennifer Brown | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>