Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study explores link between sunlight, multiple sclerosis

23.03.2010
For more than 30 years, scientists have known that multiple sclerosis (MS) is much more common in higher latitudes than in the tropics. Because sunlight is more abundant near the equator, many researchers have wondered if the high levels of vitamin D engendered by sunlight could explain this unusual pattern of prevalence.

Vitamin D may reduce the symptoms of MS, says Hector DeLuca, Steenbock Research Professor of Biochemistry at University of Wisconsin-Madison, but in a study published in PNAS this week, he and first author Bryan Becklund suggest that the ultraviolet portion of sunlight may play a bigger role than vitamin D in controlling MS.

Multiple sclerosis is a painful neurological disease caused by a deterioration in the nerve's electrical conduction; an estimated 400,000 people have the disabling condition in the United States. In recent years, it's become clear the patients' immune systems are destroying the electrical insulation on the nerve fibers.

The ultraviolet (UV) portion of sunlight stimulates the body to produce vitamin D, and both vitamin D and UV can regulate the immune system and perhaps slow MS. But does the immune regulation result directly from the UV, indirectly from the creation of vitamin D, or both?

The study was designed to distinguish the role of vitamin D and UV light in explaining the high rate of MS away from the equator, says DeLuca, a world authority on vitamin D.

"Since the 1970s, a lot of people have believed that sunlight worked through vitamin D to reduce MS," says DeLuca. "It's true that large doses of the active form of vitamin D can block the disease in the animal model. That causes an unacceptably high level of calcium in the blood, but we know that people at the equator don't have this high blood calcium, even though they have a low incidence of MS. So it seems that something other than vitamin D could explain this geographic relationship."

Using mice that are genetically susceptible to MS-like disease, the researchers triggered the disease by injecting a protein from nerve fibers. The researchers then exposed the mice to moderate levels of UV radiation for a week. After they initiated disease by injecting the protein, they irradiated the mice every second or third day.

The UV exposure (equivalent to two hours of direct summer sun) did not change how many mice got the MS-like disease, but it did reduce the symptoms of MS, especially in the animals that were treated with UV every other day, DeLuca says.

The research group also found that although the UV exposure did increase the level of vitamin D, that effect, by itself, could not explain the reduced MS symptoms.

In some situations, radiation does reduce immune reactions, but it's not clear what role that might play in the current study. "We are looking to identify what compounds are produced in the skin that might play a role, but we honestly don't know what is going on," DeLuca says. "Somehow it makes the animal either tolerate what's going on, or have some reactive mechanism that blocks the autoimmune damage."

MS is a progressive neurological disease with few effective treatments, but DeLuca stresses that the study, however hopeful, may or may not lead to a new mode of treatment. "There are several ways this could go. If we can find out what the UV is producing, maybe we could give that as a medicine. In the short term, if we can define a specific wavelength of light that is active, and it does not overlap with the wavelengths that cause cancer, we could expose patients who have been diagnosed with MS to that wavelength."

Does this information change the common prescription to avoid excessive sun exposure? "If you have an early bout with MS, then you have to think about your options," says DeLuca. "Remember, this is just experimental work at this stage. Whether it can be translated into practical applications on MS remains to be seen."

Hector DeLuca | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>