Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Storage Time for Cartilage Transplant Tissue Doubled by MU Researchers

14.03.2012
New method will increase likelihood of success in cartilage grafting procedures
For years, doctors have been able to treat defects in joint cartilage by grafting cartilage donated from cadavers into patients’ bad joints. Using current methods, donated cartilage can be stored for 28 days for a transplant before the tissue becomes too degraded to transplant into a patient. Now, researchers from the University of Missouri have found a way to store donated cartilage more than twice as long.

“Currently, nearly 80 percent of all donated tissue has to be discarded because it deteriorates before a transplant bank can find a match with a patient who needs a transplant,” James Cook, a researcher from the MU College of Veterinary Medicine and the William C. and Kathryn E. Allen Distinguished Professor in Orthopaedic Surgery, said. “By more than doubling the time we can store tissue, the odds of matching the tissue with a recipient are greatly increased.”

In a study due to be published in the Journal of Knee Surgery, Cook and Aaron Stoker from MU’s Comparative Orthopaedic Laboratory, Clark Hung and Eric Lima from Columbia University, and James Stannard, the J. Vernon Luck Sr. Distinguished Professor in Orthopaedic Surgery in the MU School of Medicine, tested tissue using their patented system, which includes storing the tissue at room temperature in a specially designed container and storage solution. The researchers found that their system preserved transplant-quality tissue for as long as 63 days. The collaborative team of researchers also developed a way to monitor the quality of the stored tissue simply by testing a few drops of their patented storage solution.

“Not only have we been able to increase maximum tissue storage time from 28 to 63 days, but tissue stored for 63 days using our new method is of much higher quality than tissue on its 28th day of storage using the current method,” Cook said. “This is important because the quality of the tissue at the time of a transplant procedure markedly affects long-term success for the patient.”

The new storage system can be used on many different types of joint cartilage, including knee, hip, shoulder, elbow, and ankle tissue. Doctors can use this tissue to treat a number of different defects including traumatic injuries, sports-related injuries, developmental defects and some types of arthritis-related cartilage loss. These tissue transplants can last for 15 years or more before needing to be replaced with traditional metal and plastic joint replacements. Cartilage grafting has been an FDA approved practice for years, so the new MU storage system is currently under licensing negotiation for clinical application. Cook is optimistic that the first grafts stored using the new system will be available to help patients at the Missouri Orthopaedic Institute within a year.

This study is a result of collaboration through Mizzou Advantage. The Mizzou Advantage was created to increase MU’s visibility, impact and stature in higher education, locally, statewide, nationally and around the world. Mizzou Advantage is a program that focuses on four areas of strength: food for the future, media of the future, one health/one medicine, and sustainable energy. The goals of Mizzou Advantage are to strengthen existing faculty networks, create new networks and propel Mizzou’s research, instruction and other activities to the next level.

Nathan Hurst | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>