Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell treatment may offer option for broken bones that don't heal

06.06.2011
Researchers at the University of North Carolina at Chapel Hill School of Medicine have shown in an animal study that transplantation of adult stem cells enriched with a bone-regenerating hormone can help mend bone fractures that are not healing properly.

The UNC study team led by Anna Spagnoli, MD, associate professor of pediatrics and biomedical engineering, demonstrated that stem cells manufactured with the regenerative hormone insulin-like growth factor (IGF-I) become bone cells and also help the cells within broken bones repair the fracture, thereby speeding the healing. The new findings are presented Sunday, June 5, 2011 at The Endocrine Society's 93rd Annual Meeting in Boston, Massachusetts.

A deficiency of fracture healing is a common problem affecting an estimated 600,000 people annually in North America. "This problem is even more serious in children with osteogenesis imperfecta, or brittle bone disease, and in elderly adults with osteoporosis, because their fragile bones can easily and repeatedly break, and bone graft surgical treatment is often not successful or feasible," Spagnoli said.

Approximately 7.9 million bone fractures occur every year in the United States alone, with an estimated cost of $70 billion. Of these, 10 to 20 percent fail to heal.

Fractures that do not mend within the normal timeframe are called non-union fractures. Using an animal model of a non-union fracture, a "knockout" mouse that lacks the ability to heal broken bones, Spagnoli and her colleagues studied the effects of transplanting adult stem cells enriched with IGF-I. They took mesenchymal stem cells (adult stem cells from bone marrow) of mice and engineered the cells to express IGF-I. Then they transplanted the treated cells into knockout mice with a fracture of the tibia, the long bone of the leg.

Using computed tomography (CT) scanning, the researchers showed that the treated mice had better fracture healing than did mice either left untreated or treated only with stem cells. Compared with controls left to heal on their own or recipients of stem cells only, treated mice had more bone bridging the fracture gap, and the new bone was three to four times stronger, according to Spagnoli.

"More excitingly, we found that stem cells empowered with IGF-I restored the formation of new bone in a mouse lacking the ability to repair broken bones. This is the first evidence that stem cell therapy can address a deficiency of fracture repair," she said.

This success in an animal model of fracture non-union, Spagnoli said, "is a crucial step toward developing a stem cell-based treatment for patients with fracture non-unions."

"We envision a clinical use of combined mesenchymal stem cells and IGF-1 similar to the approach employed in bone marrow transplant, in which stem cell therapy is combined with growth factors to restore blood cells," she said. "I think this treatment will be feasible to start testing in patients in a few years." IGF-I is currently approved for treatment of children with a deficiency of this hormone, causing growth failure.

Others that contributed to the research are: Froilan Granero-Molto, Timothy Myers, Jared Weis, Lara Longobardi, Tieshi Li, Yun Yan, Natasha Case, and Janet Rubin.

Support for the research came from the National Institute of Diabetes and Digestive and Kidney Diseases, a component of the National Institutes of Health.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

Hidden talents: Converting heat into electricity with pencil and paper

20.02.2018 | Materials Sciences

Rare find from the deep sea

20.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>