Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stability is first step toward treating ALS

23.11.2010
A team of Brandeis scientists makes breakthrough with mutant gene that causes familial form of Lou Gehrig's disease

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that eventually destroys most motor neurons, causing muscle weakness and atrophy throughout the body. There is no cure and the current treatment has only a moderate effect on the march of the disease, which typically kills within three to five years. This week in PNAS, a team of Brandeis scientists reports an innovative approach to treating the most common form of familial ALS, commonly known as Lou Gehrig's disease.

In the study, researchers studied mutations in the gene that makes a particular protein, known as SOD1, responsible for causing much of the familial form of ALS, said Brandeis University chemist and study author Jeff Agar. Genetic mutations make the SOD1 protein unstable, causing it to fall apart into two identical pieces called monomers that are sticky and prone to clumping up inside the axon, the long projection of the motor neuron that conducts electrical impulses. Motor neurons are a meter long; when the axon inside the neuron gets clogged, it eventually dies.

"Picture a tennis ball stuck to a small piece of double sided tape. Now picture another. Turn the balls until both pieces of tape come into contact and that's what scientists call a dimer, and it's stable," explained Agar. "It won't stick to anything else. That's what normal SOD1 looks like, and there are billions of SOD1 dimers in every motor neuron.

Now pull the tennis balls apart, turn one 180 degrees, stick them back together and there's a sticky end. That's what ALS-associated SOD1 mutants do. You could stick millions of these balls together if you had them, and a neuron has billions of them. "What we're trying to do is prevent this from happening," said Agar.

Agar, along with post-doctoral fellow Jared Auclair, and biochemists Greg Petsko and Dagmar Ringe, developed an ingenious "chemical rope" to tie the two monomers together, creating a stable dimer. This strategy potentially solves the instability problem, especially since the protein proved able to withstand 40 degrees of heating above body temperature before falling apart again. SOD1 is one of the body's hardest working antioxidants, and its job is to turn a dangerous free radical called superoxide into water. Some ALS mutations stop SOD1 from doing its job, a process called inactivation, and the chemical ropes were even able to reactivate these SOD1 mutants and get them working again.

Next, the scientists had to create a version of their proof-of-concept "chemical rope" that was potentially amenable to development into a therapeutic, because the first one was toxic. Here they adopted a less toxic type of chemistry known as a thiol-disulfide exchange.

"This is only the beginning," said Agar. "It's one thing to do what we've done using purified proteins, but it is orders of magnitude more difficult to accomplish the same thing inside a complex organism. We have a lot more work to do before this could benefit ALS patients."

While the familial form of ALS, known as fALS, affects only about two percent of all ALS cases, there is growing evidence that changes in the same protein can cause some cases of sporadic (non inherited) ALS, and the researchers believe that perhaps 30 to 40 percent of cases where there is no genetic cause could potentially also benefit from the same treatment. The next step is to study SOD1 in cell cultures and in a mouse model to develop a pre-clinical candidate drug using this strategy.

The study was funded by the National Institutes of Health.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New material for splitting water

19.06.2018 | Physics and Astronomy

Cementless fly ash binder makes concrete 'green'

19.06.2018 | Materials Sciences

Overdosing on Calcium

19.06.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>