Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stability is first step toward treating ALS

A team of Brandeis scientists makes breakthrough with mutant gene that causes familial form of Lou Gehrig's disease

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that eventually destroys most motor neurons, causing muscle weakness and atrophy throughout the body. There is no cure and the current treatment has only a moderate effect on the march of the disease, which typically kills within three to five years. This week in PNAS, a team of Brandeis scientists reports an innovative approach to treating the most common form of familial ALS, commonly known as Lou Gehrig's disease.

In the study, researchers studied mutations in the gene that makes a particular protein, known as SOD1, responsible for causing much of the familial form of ALS, said Brandeis University chemist and study author Jeff Agar. Genetic mutations make the SOD1 protein unstable, causing it to fall apart into two identical pieces called monomers that are sticky and prone to clumping up inside the axon, the long projection of the motor neuron that conducts electrical impulses. Motor neurons are a meter long; when the axon inside the neuron gets clogged, it eventually dies.

"Picture a tennis ball stuck to a small piece of double sided tape. Now picture another. Turn the balls until both pieces of tape come into contact and that's what scientists call a dimer, and it's stable," explained Agar. "It won't stick to anything else. That's what normal SOD1 looks like, and there are billions of SOD1 dimers in every motor neuron.

Now pull the tennis balls apart, turn one 180 degrees, stick them back together and there's a sticky end. That's what ALS-associated SOD1 mutants do. You could stick millions of these balls together if you had them, and a neuron has billions of them. "What we're trying to do is prevent this from happening," said Agar.

Agar, along with post-doctoral fellow Jared Auclair, and biochemists Greg Petsko and Dagmar Ringe, developed an ingenious "chemical rope" to tie the two monomers together, creating a stable dimer. This strategy potentially solves the instability problem, especially since the protein proved able to withstand 40 degrees of heating above body temperature before falling apart again. SOD1 is one of the body's hardest working antioxidants, and its job is to turn a dangerous free radical called superoxide into water. Some ALS mutations stop SOD1 from doing its job, a process called inactivation, and the chemical ropes were even able to reactivate these SOD1 mutants and get them working again.

Next, the scientists had to create a version of their proof-of-concept "chemical rope" that was potentially amenable to development into a therapeutic, because the first one was toxic. Here they adopted a less toxic type of chemistry known as a thiol-disulfide exchange.

"This is only the beginning," said Agar. "It's one thing to do what we've done using purified proteins, but it is orders of magnitude more difficult to accomplish the same thing inside a complex organism. We have a lot more work to do before this could benefit ALS patients."

While the familial form of ALS, known as fALS, affects only about two percent of all ALS cases, there is growing evidence that changes in the same protein can cause some cases of sporadic (non inherited) ALS, and the researchers believe that perhaps 30 to 40 percent of cases where there is no genetic cause could potentially also benefit from the same treatment. The next step is to study SOD1 in cell cultures and in a mouse model to develop a pre-clinical candidate drug using this strategy.

The study was funded by the National Institutes of Health.

Laura Gardner | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>