Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Social isolation worsens cancer

01.10.2009
Using mice as a model to study human breast cancer, researchers have demonstrated that a negative social environment (in this case, isolation) causes increased tumor growth. The work shows—for the first time—that social isolation is associated with altered gene expression in mouse mammary glands, and that these changes are accompanied by larger tumors.

"This interdisciplinary research illustrates that the social environment, and a social animal's response to that environment, can indeed alter the level of gene expression in a wide variety of tissues, not only the brain," said Suzanne D. Conzen, MD, associate professor of medicine at the University of Chicago and senior author of the study, to be published on September 30, 2009, in Cancer Prevention Research. "This is a novel finding and may begin to explain how the environment affects human susceptibility to other chronic diseases such as central obesity, type 2 diabetes, hypertension, etc."

The research began six years ago when cancer specialist Conzen joined forces with biobehavioral psychologist Martha McClintock, PhD, professor of psychology and founder of the Institute for Mind and Biology at the University of Chicago, who has long been interested in the result of social isolation in aging, to study behavior and cancer in a mouse model.

The University of Chicago scientists took mice that were genetically predisposed to develop mammary gland (breast) cancer and raised them in two environments: in groups of mice and isolated. After the same amount of time, the isolated mice grew larger mammary gland tumors. They were also found to have developed a disrupted stress hormone response.

"I doubted there would be a difference in the growth of the tumors in such a strong model of genetically inherited cancer simply based on chronic stress in their environments, so I was surprised to see a clear, measurable difference both in mammary gland tumor growth and interestingly in accompanying behavior and stress hormone levels," Conzen said.

The researchers then turned their attention to how the chronic social environment affected the biology of cancer growth. In other words, they sought to discover the precise molecular consequences of the stressful environment.

To do this, they studied gene expression in the mouse mammary tissue over time. Conzen and her colleagues found altered expression levels of metabolic pathway genes (which are expected to favor increased tumor growth) in the isolated mice. This was the case even before tumor size differences were measurable.

These altered gene expression patterns suggest potential molecular biomarkers and/or targets for preventive intervention in human breast cancer.

"Given the increased knowledge of the human genome, we can begin to identify and analyze the specific alterations that take place in caner-prone tissues of individuals living in at-risk environments," Conzen said. "That will help us to better understand and implement cancer prevention strategies."

These findings do suggest novel targets for chemoprevention, according to Caryn Lerman, PhD, Scientific Director of the Abramson Cancer Center at the University of Pennsylvania, Philadelphia and Deputy Editor of Cancer Prevention Research. "Future studies should evaluate whether these molecular processes can be reversed by chemopreventive agents."

The findings also support previous epidemiologic studies suggesting that social isolation increases the mortality of chronic diseases, as well as clinical studies revealing that social support improves the outcomes of cancer patients.

Greg Borzo | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>