Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smithsonian Scientist Uncovers New Links Connecting Environmental Changes with Spike in Infectious Disease

22.05.2014

Human Activities Near Lake Malaŵi Lead to Rise in Parasitic Infections

National Museum of Natural History scientist Bert Van Bocxlaer and an international team of researchers revealed that anthropogenic changes in Africa’s Lake Malaŵi are a driving force behind the increase of urogenital schistosomiasis, a debilitating tropical disease caused by parasitic flatworms.


Schistosomiasis: B. nyassanus

Courtesy of Ad Konings, Cichlid Press


Schistosomiasis: Schistosoma parasite

Courtesy of Beltran et al. (2008), PlosOne 3(10): e3328.

Scientists estimate that 250 million people are affected by schistosomiasis worldwide, and 600 million more are at risk of contracting it. In some villages along the shorelines of Lake Malaŵi, 73 percent of the people and up to 94 percent of the schoolchildren are infected with urogenital schistosomiasis, one of several forms of the disease.

Van Bocxlaer’s research suggests that this spike in infection is directly linked to an increase in human populations and agricultural activities near Lake Malaŵi, and may include a change in the dietary preferences of mollusk-eating fishes. Details from this study and recommendations to reduce the prevalence of urogenital schistosomiasis are published in the May 2014 issue of Trends in Parasitology.

Human population densities in Malaŵi have more than doubled during the past 30 years, resulting in increased land use, overfishing and ecological changes that create a favorable environment for Bulinus nyassanus, a small freshwater snail that acts as an intermediate host of the disease-causing parasite.

Infected snails release larval flatworms that can penetrate human skin upon contact with water. Humans are the definitive host and, upon infection, excrete eggs that hatch in water and infect snails such as B. nyassanus.

“Scientists have long known that environmental changes can affect public health, but our research reveals that human impact on the environment plays a larger role in the spread of schistosomiasis than previously thought,” said Van Bocxlaer. “Decreasing the transmission of this infectious disease will require an integrated control program for schistosomiasis, including community-based health education with efforts toward more sustainable resource use.”

Van Bocxlaer and his team discovered that human activities surrounding Lake Malaŵi have led to drastic biotic and abiotic changes in the lake’s ecosystem. Observed changes include an increase in sedimentation and nutrient influx due to agricultural initiatives and soil erosion.

B. nyassanus thrives in the shallow, nutrient-rich sandy sediments along shorelines that humans frequent, and it faces few natural predators because populations of fish that feed on this snail have greatly declined due to overfishing. Scientists also suspect that the fish have a decreased affinity for eating B. nyassanus, favoring instead a recently introduced non-native form of the snail Melanoides tuberculata.

The research team examined sediment archives and compared historical and modern populations of B. nyassanus to determine ecological changes in Lake Malaŵi over time. The scientists relied on historical data, such as those preserved in museum collections, to determine that changes in snail populations in southern Malaŵi that, in conjunction with the impacts of human activities in this region, have contributed to an increase of schistosomiasis during the past several decades.

Symptoms of schistosomiasis generally originate in the urogenital organs and the intestines and can lead to life-threatening complications. Estimates from the World Health Organization suggest that more than 200,000 deaths per year are due to schistosomiasis in sub-Saharan Africa alone; approximately one-third of the total deaths caused by malaria worldwide.

Kathryn Sabella | Eurek Alert!
Further information:
http://newsdesk.si.edu/releases/smithsonian-scientist-uncovers-new-links-connecting-environmental-changes-spike-infectious-

Further reports about: Disease Environmental Infectious ecosystem eggs environment freshwater schistosomiasis skin spread

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>