Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smithsonian Scientist Uncovers New Links Connecting Environmental Changes with Spike in Infectious Disease

22.05.2014

Human Activities Near Lake Malaŵi Lead to Rise in Parasitic Infections

National Museum of Natural History scientist Bert Van Bocxlaer and an international team of researchers revealed that anthropogenic changes in Africa’s Lake Malaŵi are a driving force behind the increase of urogenital schistosomiasis, a debilitating tropical disease caused by parasitic flatworms.


Schistosomiasis: B. nyassanus

Courtesy of Ad Konings, Cichlid Press


Schistosomiasis: Schistosoma parasite

Courtesy of Beltran et al. (2008), PlosOne 3(10): e3328.

Scientists estimate that 250 million people are affected by schistosomiasis worldwide, and 600 million more are at risk of contracting it. In some villages along the shorelines of Lake Malaŵi, 73 percent of the people and up to 94 percent of the schoolchildren are infected with urogenital schistosomiasis, one of several forms of the disease.

Van Bocxlaer’s research suggests that this spike in infection is directly linked to an increase in human populations and agricultural activities near Lake Malaŵi, and may include a change in the dietary preferences of mollusk-eating fishes. Details from this study and recommendations to reduce the prevalence of urogenital schistosomiasis are published in the May 2014 issue of Trends in Parasitology.

Human population densities in Malaŵi have more than doubled during the past 30 years, resulting in increased land use, overfishing and ecological changes that create a favorable environment for Bulinus nyassanus, a small freshwater snail that acts as an intermediate host of the disease-causing parasite.

Infected snails release larval flatworms that can penetrate human skin upon contact with water. Humans are the definitive host and, upon infection, excrete eggs that hatch in water and infect snails such as B. nyassanus.

“Scientists have long known that environmental changes can affect public health, but our research reveals that human impact on the environment plays a larger role in the spread of schistosomiasis than previously thought,” said Van Bocxlaer. “Decreasing the transmission of this infectious disease will require an integrated control program for schistosomiasis, including community-based health education with efforts toward more sustainable resource use.”

Van Bocxlaer and his team discovered that human activities surrounding Lake Malaŵi have led to drastic biotic and abiotic changes in the lake’s ecosystem. Observed changes include an increase in sedimentation and nutrient influx due to agricultural initiatives and soil erosion.

B. nyassanus thrives in the shallow, nutrient-rich sandy sediments along shorelines that humans frequent, and it faces few natural predators because populations of fish that feed on this snail have greatly declined due to overfishing. Scientists also suspect that the fish have a decreased affinity for eating B. nyassanus, favoring instead a recently introduced non-native form of the snail Melanoides tuberculata.

The research team examined sediment archives and compared historical and modern populations of B. nyassanus to determine ecological changes in Lake Malaŵi over time. The scientists relied on historical data, such as those preserved in museum collections, to determine that changes in snail populations in southern Malaŵi that, in conjunction with the impacts of human activities in this region, have contributed to an increase of schistosomiasis during the past several decades.

Symptoms of schistosomiasis generally originate in the urogenital organs and the intestines and can lead to life-threatening complications. Estimates from the World Health Organization suggest that more than 200,000 deaths per year are due to schistosomiasis in sub-Saharan Africa alone; approximately one-third of the total deaths caused by malaria worldwide.

Kathryn Sabella | Eurek Alert!
Further information:
http://newsdesk.si.edu/releases/smithsonian-scientist-uncovers-new-links-connecting-environmental-changes-spike-infectious-

Further reports about: Disease Environmental Infectious ecosystem eggs environment freshwater schistosomiasis skin spread

More articles from Health and Medicine:

nachricht Reward, aversion behaviors activated through same brain pathways
03.09.2015 | Washington University School of Medicine

nachricht Using DNA origami to build nanodevices of the future
31.08.2015 | Institute for Integrated Cell-Material Sciences at Kyoto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Saving coral reefs depends more on protecting fish than safeguarding locations

03.09.2015 | Ecology, The Environment and Conservation

Research team from Münster develops innovative catalytic chemistry process

03.09.2015 | Life Sciences

Together - Work - Experience

03.09.2015 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>