Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart lasers could make cancer biopsies painless, help speed new drugs to market

01.02.2011
Biopsies in the future may be painless and noninvasive, thanks to smart laser technology being developed at Michigan State University.

To test for skin cancer, patients today must endure doctors cutting away a sliver of skin, sending the biopsy to a lab and anxiously awaiting the results. Using laser microscopes that deploy rapid, ultra-short pulses to identify molecules, doctors may soon have the tools to painlessly scan a patient's troublesome mole and review the results on the spot, said Marcos Dantus.

The results touting this new molecule-selective technology can be found in the current issue of Nature Photonics, which Dantus co-authored with Sunney Xie of Harvard University.

"Smart lasers allow us to selectively excite compounds – even ones with small spectroscopic differences," said Dantus. "We can shape the pulse of the lasers, excite one compound or another based on their vibrational signatures, and this gives us excellent contrast."

In the past, researchers could approach this level of contrast by introducing fluorescent compounds. With the breakthrough using stimulated Raman scattering microscopy, fluorescent markers are unnecessary.

"Label-free molecular imaging has been the holy grail in medicine," Dantus said. "SRS imaging gives greater specificity and the ability to map a particular chemical species in the presence of an interfering species, such as cholesterol in the presence of lipids."

Additional potential applications include allowing researchers to closely examine how compounds penetrate skin and hair. Smart lasers also can better identify how drugs penetrate tissue and how drugs and tissue interact, thus mitigating the chances of potential side effects and helping reduce the time required to bring new drugs to market.

Dantus also is using smart laser imaging technology at MSU for detecting traces of hazardous substances from a distance.

"The ability to image with molecular specificity and sensitivity opens a number of applications in medicine as well as in homeland security," he said.

Collaboration for the paper began when Harvard graduate student Christian Freudiger contacted BioPhotonic Solutions, a high-tech company Dantus launched in 2003 based on his research at MSU. Dantus was not only able to provide the laser pulse shaper Harvard needed to conduct the research, but he also was able to lend his expertise as well as the support of his MSU laboratory, Dantus said.

"I like to say that we enable technology," he said. "Controlling ultrashort pulses, which once required Ph.D. experts, can now be done with push-button simplicity by a small computer-controlled box. This instrument is now being used in the most prestigious research laboratories in the world."

Dantus' research is funded in part by the National Science Foundation.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>