Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slowing the allergic march

15.08.2011
Penn researchers identify a target that could combat allergies of early childhood

A pandemic of ailments called the "allergic march" -- the gradual acquisition of overlapping allergic diseases that commonly begins in early childhood -- has frustrated both parents and physicians. For the last three decades, an explosion of eczema, food allergies, hay fever, and asthma have afflicted children in the United States, the European Union, and many other countries.

What causes the march and how to derail it has remained elusive. Now, in this week's Nature, David Artis, PhD, an associate professor of Microbiology at the Perelman School of Medicine at the University of Pennsylvania, and a team of collaborating international scientists, identified that expression of the protein TSLP may influence susceptibility to multiple allergic diseases by regulating the maturation of basophils, an uncommon type of white blood cell. Specifically, TSLP elicits the maturation of a population of distinct basophils that promotes allergic inflammation.

"A fundamental question regarding the allergic march is if a child has eczema, for example, which is associated with TSLP production in skin cells, why would some of those children subsequently be more susceptible to other allergic diseases at different sites of the body such as the gut or the lung?" asks Artis. "Although we have known that TSLP is associated with allergic diseases for many years, how this biological messenger might influence multiple allergic diseases has been a puzzle."

The origins of the present study lie in previous reports that showed that different versions of the gene encoding TSLP, an inflammation-producing cytokine, are associated with increased susceptibility to multiple allergic disorders, and that exaggerated TSLP production is associated with asthma, eczema, and food allergies in children. Together, these studies indicate that TSLP could be a critical regulator of multiple cytokine-associated allergic inflammatory diseases.

In this new report, mice overexpressing TSLP developed allergic inflammation in their lungs, skin, and gut that was associated with very high levels of basophils. "The critical findings are that TSLP appears to activate the development and maturation of early-stage basophils in the bone marrow and that TSLP elicits a distinct type of basophil," explains first author Mark Siracusa, PhD, a Ruth L. Kirschstein National Research Service Fellow in the Artis lab. Based on these findings, the researchers speculate that this basophil maturation could promote allergic reactions at multiple tissue sites.

To translate these findings to patient populations, Artis and colleagues teamed up with a group of pediatricians at the Children's Hospital of Philadelphia to examine basophil responses in children that suffer from the food allergy-associated disease, eosinophilic esophagitis, which causes inflammation of the esophagus. Previous studies have shown that TSLP is overexpressed in food allergy patients. The team showed in the Nature paper that in children with food allergies basophils exhibited a different molecular make-up compared to non-allergy patients.

"It's promising that after more than 130 years since basophils were first discovered by Paul Ehrlich in Germany, we are still finding out new things about this cell population that could help in the design of new drugs to prevent or better fight allergic diseases," concludes Artis.

With more than 50 percent of Americans estimated to suffer from at least one allergic disease, says Artis, the team is hoping that targeting TSLP and basophils may offer new therapies for multiple allergic diseases.

In addition to Artis and Siracusa, co-authors are Steven A. Saenz, David A. Hill, Brian S. Kim, Travis A. Doering, E. John Wherry, and Taku Kambayashi, all from Penn, as well as Mark B. Headley and Steven F. Ziegler, Benaroya Research Institute, University of Washington School of Medicine; Heidi K. Jessup, Lori Siegel and Michael R. Comeau, Amgen Inc., Seattle; Emily C. Dudek, Antonella Cianferoni, & Jonathan M. Spergel, Children's Hospital of Philadelphia; and Masato Kubo, RIKEN Yokohama Institute, Tokyo University of Science.

The research was supported by the National Institutes of Health National Institute of Allergy and Infectious Diseases and the Burroughs Wellcome Fund.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care.

The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>