Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleep may be factor in weight control

18.05.2009
Could sleep be a critical component to maintaining a healthy body weight? According to new research to be presented on Sunday, May 17, at the American Thoracic Society's 105th International Conference in San Diego, body mass index (BMI) is linked to length and quality of sleep in a surprisingly consistent fashion.

As part of the Integrative Cardiac Health Project at Walter Reed Army Medical Center, researchers analyzed the sleep, activity and energy expenditures of 14 nurses who had volunteered for a heart-health program at the Walter Reed, where the nurses were employed. The program included nutritional counseling, exercise training, stress management and sleep improvement.

Each participant wore an actigraphy armband that measured total activity, body temperature, body position and other indices of activity and rest.

"When we analyzed our data by splitting our subjects into 'short sleepers' and 'long sleepers,' we found that short sleepers tended to have a higher BMI, 28.3 kg/m2, compared to long sleepers, who had an average BMI of 24.5. Short sleepers also had lower sleep efficiency, experienced as greater difficulty getting to sleep and staying asleep," said lead investigator Arn Eliasson, M.D.

Surprisingly, overweight individuals tended to be more active than their normal weight counterparts, taking significantly more steps than normal weight individuals: 14,000 compared to 11,300, a nearly 25 percent difference, and expending nearly 1,000 more calories a day—3,064 versus 2,080.

However, those additional energy expenditures did not manifest in reduced weight.

"We found so many interesting links in our data. It opens up a number of possibilities for future investigation," said Dr. Eliasson. "Primarily, we want to know what is driving the weight differences, and why sleep and weight appear to be connected."

He postulates that getting less sleep might disrupt natural hormonal balances—for example, reducing the amount of leptin, otherwise known as the satiety hormone—and could thereby cause those individuals to eat more. Stress may also play a role in both reducing the length and quality of sleep and increasing eating and other behaviors that may result in weight gain.

"Higher perceived stress may erode sleep. Stress and being less rested may cause these individuals to be less organized than normal weight individuals, meaning they would have to make more trips and take more steps to accomplish the same tasks. This might add to their stress and encourage other unhealthy behaviors like stress eating," said Dr. Eliasson.

"It would be fascinating to know the results of a carefully designed study that controlled for the many influences on weight gain, while varying sleep parameters and measuring hormonal mediators of appetite and metabolism," said Dr. Eliasson. "We are planning further studies to evaluate the role of stress in sleep and metabolism."

Keely Savoie | EurekAlert!
Further information:
http://www.thoracic.org

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>