Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silver Nanoparticles May One Day Be Key to Devices That Keep Hearts Beating Strong and Steady

11.02.2010
Diamonds and gold may make some hearts flutter on Valentine's Day, but in a University at Buffalo laboratory, silver nanoparticles are being designed to do just the opposite.

The nanoparticles are part of a new family of materials being created in the laboratory of SUNY Distinguished Professor and Greatbatch Professor of Advanced Power Sources Esther Takeuchi, PhD, who developed the lithium/silver vanadium oxide battery.

The battery was a major factor in bringing implantable cardiac defibrillators (ICDs) into production in the late 1980s. ICDs shock the heart into a normal rhythm when it goes into fibrillation.

Twenty years later, with more than 300,000 of these units being implanted every year, the majority of them are powered by the battery system developed and improved by Takeuchi and her team. For that work she has earned more than 140 patents, believed to be more than any other woman in the United States. Last fall, she was one of four recipients honored in a White House ceremony with the National Medal of Technology and Innovation.

ICD batteries, in general, now last five to seven years. But she and her husband and co-investigator, SUNY Distinguished Teaching Professor of Chemistry Kenneth Takeuchi, PhD, and Amy Marschilok, PhD, UB research assistant professor of chemistry, are exploring even-better battery systems, by fine-tuning bimetallic materials at the atomic level.

Their research investigating feasibility for ICD use is funded by the National Institutes of Health, while their investigation of new, bimetallic systems is funded by the U.S. Department of Energy.

So far, their results show that they can make their materials 15,000 times more conductive upon initial battery use due to in-situ (that is, in the original material) generation of metallic silver nanoparticles. Their new approach to material design will allow development of higher-power, longer-life batteries than was previously possible.

These and other improvements are boosting interest in battery materials and the revolutionary devices that they may make possible.

"We may be heading toward a time when we can make batteries so tiny that they -- and the devices they power -- can simply be injected into the body," Takeuchi says.

Right now, her team is exploring how to boost the stability of the new materials they are designing for ICDs. The materials will be tested over weeks and months in laboratory ovens that mimic body temperature of 37 degrees Celsius.

"What's really exciting about this concept is that we are tuning the material at the atomic level," says Takeuchi. "So the change in its conductivity and performance is inherent to the material. We didn't add supplements to achieve that, we did it by changing the active material directly."

She explains that new and improved batteries for biomedical applications could, in a practical way, revolutionize treatments for some of the most persistent diseases by making feasible devices that would be implanted in the brain to treat stroke and mental illness, in the spine to treat chronic pain or in the vagal nerve system to treat migraines, Alzheimer's disease, anxiety, even obesity.

And even though batteries are an historic technology, they are far from mature, Takeuchi notes. This spring, she is teaching the energy storage course in UB's School of Engineering and Applied Sciences and the class is filled to capacity. "I've never seen interest in batteries as high as it is now," she says.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>