Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Significant progress made towards individualized cancer immunotherapy

12.05.2015

Recent immunological findings and technological progress pave the way for customized cancer vaccines / Results published in Nature

Mainz-based researchers have made significant advances with regard to the development of individualized immunotherapy strategies for treating cancer. They have managed to identify the relevant genetic changes or mutations associated with various types of cancer and have determined their individual blueprints.


Circos Diagram showing the Mutanome of the mouse CT26 colon carcinoma

ill./©: TRON

This makes it possible for the scientists to readily produce customized cancer vaccines of the kind that have already been demonstrated to be effective in animal models. Here they have proven effective in the regression and even elimination of experimental tumors.

Headed by cancer researcher Professor Ugur Sahin, participants in the successful project included researchers at the biopharmaceutical research institute TRON – Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, the biotech company BioNTech AG, the Mainz University Medical Center, and the Californian La Jolla Institute for Allergy and Immunology in the USA. Their results have recently been published in the journal Nature.

Unlike the conventional methods of treating cancer, i.e., surgery, chemotherapy, and radiotherapy, cancer immunotherapy uses the immune system to fight cancer. "We now know that our immune system itself is able to recognize cancer and take steps to fight it," explained Professor Ugur Sahin.

"Unfortunately, it is not usually capable of controlling a tumor. One obvious strategy is therefore to stimulate the immune system in such a way that it is able to restrict tumor growth and to destroy malignant cells." It has also long been known that each tumor has its own individual genetic fingerprint that includes numerous genetic alterations.

The innovative concept of individualized cancer immunotherapy aims to identify these mutations in a tumor, to decipher its genetic blueprint through sequencing, and – using this blueprint as a template – to produce a synthetic vaccine that is specific to the tumor and thus to the patient. This vaccine will then supervise and train the body's own immune system so that it is able to fight the cancer in a targeted manner.

"The implementation of this promising approach has to date been hampered by the fact that tumor mutations differ greatly from patient to patient, meaning that it is a very complex procedure to create vaccines on demand," added Sahin. "Through our recent research, we have found a way to bypass this problem and demonstrate what form a practicable strategy with acceptable outlay might take. We describe both fundamental immunological insights and technological advances that should allow us to deliver truly personalized immunotherapy to cancer patients."

In pre-clinical experiments, the researchers first looked at the mutations in three different types of tumors – skin cancer, colonic cancer, and breast cancer – and identified their genetic blueprints by means of sequencing. Their objective was to discover which mutations are relevant to immunotherapy, i.e., the mutations that can, in principle, be recognized by the immune system. The Mainz-based team was able to demonstrate for the first time that up to 20 percent of all mutations can trigger an immune response.

"We discovered this by keeping an open mind and looking at the entire repertoire of immune defense mechanisms. This was an important factor in our success," said Sahin. "Because, surprisingly, the majority of tumor mutations are not detected by the usual suspects, the natural killer cells, but rather by so-called helper cells. Such a high proportion of relevant mutations, in turn, is important for the broad applicability of the approach, because many tumor types thus have sufficient points of attack and appear to be treatable in principle."

In a second phase, the team considered how they could implement these new insights in practice and identify the relevant mutations as simply and reliably as possible. For this purpose, they developed a bioinformatic algorithm. "Once the relevant mutations have been identified, we can use this information to create a customized medication without excessive efforts," asserted Sahin. They decided to use so-called ribonucleic acids (mRNA) to synthesize vaccines. With the help of the genetic mutation fingerprint, these provide a kind of template for the production of mRNA vaccines. The researchers used the genetic information on ten mutations rather than on just a single mutation for the synthesis process so that they would be able to attack the tumor, as it were, in several places at once ensuring that it would be less capable of resistance. In fact, the use of this approach in an animal model resulted in an effective regression and elimination of tumors. The RNA vaccines do not cause permanent genetic modifications to the genetic makeup of tumor cells, but are, to put it simply, eliminated after they have done their work of stimulating and instructing the body's immune system. "All this shows that the on-demand production of customized vaccines to treat cancer is, in fact, possible and practicable," emphasized Professor Ugur Sahin.

The researchers were also able to identify matching types and incidences of relevant mutations in human tumors. Their findings are to be further tested in an international clinical study of malignant melanoma in which the Rhine-Main Skin Cancer Research Center of the University Medical Center of Johannes Gutenberg University Mainz (JGU) headed by Dr. Carmen Loquai will be participating. Additional clinical trials are being planned.

"We systematically take a translational approach to research," emphasized Professor Ulrich Förstermann, Chief Scientific Officer of the Mainz University Medical Center. "The current research project impressively demonstrates the success of this strategy as it is an example par excellence of the translation of findings into therapy. The results of fundamental immunological research have been converted into a practicable clinical strategy." Professor Babette Simon, Chief Medical Officer and Chairperson of the Mainz University Medical Center, added: "This rapid 'from bench to bedside' development is a unique feature of university medicine. This ensures that we are able to deliver the latest findings from fundamental research to patients as quickly as possible."

Publication:
Mutant MHC class II epitopes drive therapeutic immune responses to cancer
Sebastian Kreiter, Mathias Vormehr, Niels van de Roemer, Mustafa Diken, Martin Löwer, Jan Diekmann, Sebastian Boegel, Barbara Schrörs, Fulvia Vascotto, John C. Castle, Arbel D. Tadmor, Stephen P. Schoenberger, Christoph Huber, Özlem Türeci & Ugur Sahin
DOI: 10.1038/nature14426
http://dx.doi.org/10.1038/nature14426

Press contact:
Dr. Renée Dillinger-Reiter, Press and Public Relations, Mainz University Medical Center, 55099 Mainz, GERMANY
phone +49 6131 17-7424, fax +49 6131 17-3496, e-mail: pr@unimedizin-mainz.de
http://www.unimedizin-mainz.de/home.html?L=1

Weitere Informationen:

http://www.uni-mainz.de/presse/18291_ENG_HTML.php - press release

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>