Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signals from stroking have direct route to brain

14.04.2009
Nerve signals that tell the brain that we are being slowly stroked on the skin have their own specialised nerve fibres in the skin.

This is shown by a new study from the Sahlgrenska Academy, University of Gothenburg, Sweden. The discovery may explain why touching the skin can relieve pain.

The specialised nerve fibres in the skin are called CT nerves (C-tactile) and they travel directly to the areas in the brain that are important in the emergence of feelings.

"Basically the signals that tell the brain that we are being stroked on the skin have their own direct route to the brain, and are not blocked even if the brain is receiving pain impulses from the same area. In fact it's more the opposite, that the stroking impulses are able to deaden the pain impulses," says Line Löken, postgraduate student in neurophysiology at the Sahlgrenska Academy.

The results are being published in the distinguished scientific journal, Nature Neuroscience. The research group examined a group of healthy subjects using a technique called microneurography.

"By inserting a thin electrode into a nerve in the forearm we can listen in on the nerve and pick up signals from one of the thousands of nerve fibres that make up a nerve," explains Associate Professor Håkan Olausson, who is leading the research group behind the discovery, together with Johan Wessberg.

Each individual nerve fibre is responsible for touch signals from roughly a square centimetre of skin. The research team used a specially-designed robot, which brushed over the exact area of skin for which a particular nerve fibre is responsible. The subjects were also asked to rate how pleasant or unpleasant they found the brushing.

"As the nerve signals that were sent in the CT nerves became more frequent, the subjects reported the experience as being increasingly pleasant. Of the skin nerves that we studied, it was only the CT nerves that had this strong link between the frequency of the signals and how pleasant it felt," says researcher Johan Wessberg.

For further information, contact:
Line Löken, postgraduate student, telephone: +46 (0)705 658861, e-mail: line.loken@neuro.gu.se
Håkan Olausson, Associate Professor, telephone +46 (0)733 823416, e-mail: hakan.olausson@gu.se

Johan Wessberg, Senior Lecturer, telephone: +46 (0)31 7863506, e-mail: johan.wessberg@physiol.gu.se

Journal: Nature Neuroscience
Title of the article: Coding of pleasant touch by unmyelinated afferents in humans

Authors: Line S. Löken, Johan Wessberg, India Morrisson, Francis McGlone, Håkan Olausson

Elin Lindström Claessen
Public Relations Officer at The Sahlgrenska Academy at the University of Gothenburg
Telephone: +46 (0)31 7863837, +46 (0)70 8294303
E-mail: elin.lindstrom@sahlgrenska.gu.se
The Sahlgrenska Academy is the health science faculty at the University of Gothenburg. The academy runs courses and pursues research within medicine, odontology and care sciences. Around 4,000 undergraduates and 1,000 postgraduate students study at the Academy. The Academy employs 1,500 people, of which 850 are researchers and/or teachers.

Helena Aaberg | idw
Further information:
http://www.gu.se/
http://www.sahlgrenska.gu.se

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>