Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shape-shifting nanoparticles flip from sphere to net in response to tumor signal

29.05.2013
Scientists at the University of California, San Diego, have designed tiny spherical particles to float easily through the bloodstream after injection, then assemble into a durable scaffold within diseased tissue.

An enzyme produced by a specific type of tumor can trigger the transformation of the spheres into netlike structures that accumulate at the site of a cancer, the team reports in the journal Advanced Materials this week.

Targeting treatments specifically to cancerous or other diseased cells depends on some means of accumulating high levels of a drug or other therapeutic agent at the specific site and keeping it there. Most efforts so far depend on matching a piece of the drug-delivering molecule to specific receptors on the surface of the target cell.

Inspiration for this new strategy came from biological systems that use shape to alter the ability of something to lock in place or slip away and escape, said Nathan Gianneschi, a professor of chemistry and biochemistry, who led the project.

"We wanted to come up with a new approach," Gianneschi said. "Specifically, we wanted to design switchable materials that we could inject in one shape and have them change to another between the blood and tumors."

Some cancerous tissues produce high levels of a class of molecules called MMPs, for matrix metalloproteinases. These enzymes change how other proteins behave by altering their molecular configuration, leading to metastasis. Gianneschi and colleagues harnessed this ability to alter their nanoparticles in ways that would cause them to linger at the site of the tumor.

"We figured out how to make an autonomous material that could sense its environment and change accordingly," Gianneschi said.

Each nanoparticle is made of many detergent-like molecules with one end that mixes readily with water and another that repels it. In solution, they self assemble into balls with the water-repellant ends inside, and in that configuration can easily be injected into a vein.

When mixed with MMPs in vials, the enzymes nicked the peptides on the surface of the spheres, which reassembled into netlike threads.

The team tested the concept further by injecting their new nanoparticles into mice with human fibrosarcomas, a kind of cancer that produces high levels of MMPs.

To mark when the spheres broke down to form other structures, the chemists placed one of two fluorecent dyes, rhodamine or fluorescein, inside the spheres. In close proximity, the dyes interact to create a specific light signal called FRET for Förster Resonance Energy Transfer, when energy jumps from rhodamine to fluorescein.

Within a day they detected FRET signals indicating that the spheres had reassembled at the sites of the tumors, and the signal persisted for at least a week.

The treatment is not inherently toxic. It did not appear to change the tumors in any way, and liver and kidney, the organs most vulnerable to collateral damage from treatments because they clear toxins from the body, were normal and healthy eight days after injection.

Different versions of these nanoparticles could be designed to respond to signals inherent to other types of cancers and inflamed tissue, the authors say. The spheres can also be engineered to carry drugs, or different diagnostic probes.

Right now, this same team is developing nanoparticles that carry an infrared dye, which would enable them to visualize tumors deeper inside the body along with other materials that can be imaged with instruments commonly available in the clinic.

Co-authors include Miao-Ping Chen and Matthew Thompson in Gianneschi's group, and Christopher Barbak and David Hall in UC San Diego School of Medicine's Department of Radiology. Funding agencies include National Institutes of Health, Army Research Office and Air Force Office of Scientific Research. Gianneschi was also supported by a New Faculty Award from the Henry and Camille Dreyfus Foundation and a Research Fellowship from the Alfred P. Sloan Foundation.

Susan Brown | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>