Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists establish new class of anti-diabetic compound

05.09.2011
Research offers hope for better treatments for diabetes patients

In a joint study, scientists from The Scripps Research Institute and Harvard University's Dana-Farber Cancer Institute have established a new class of anti-diabetic compound that targets a unique molecular switch.

The finding paves the way for the development of anti-diabetic therapeutics with minimal adverse side effects plaguing currently available drugs such as Avandia (rosiglitazone), scheduled to be removed from pharmacy shelves this fall due to concerns about increased risk of heart attack.

The new study, led by Patrick R. Griffin, professor and chair of the Department of Molecular Therapeutics at Scripps Florida, Bruce Spiegelman, professor of cell biology at the Dana-Farber Cancer Institute, and Theodore Kamenecka, associate scientific director of medicinal chemistry at Scripps Florida, was published September 4, 2011, in the journal Nature. The study describes a new compound known as SR1664.

"In this study, we demonstrate that we have discovered novel compounds that work effectively through a unique mechanism of action on a well-validated clinical target for diabetes," said Griffin. "This unique mechanism of action appears to significantly limit side effects associated with marketed drugs. This study is a great example of interdisciplinary, inter-institutional collaboration with chemistry, biochemistry, structural biology, and pharmacology."

"It appears that we may have an opportunity to develop entire new classes of drugs for diabetes and perhaps other metabolic disorders," said Spiegelman.

Diabetes affects nearly 24 million children and adults in the United States, according to the America Diabetes Association.

A Viable Therapeutic Target

The study follows previous research by the authors published last year in Nature (Volume 466, Issue 7305, 451-456) that suggested an obesity-linked mechanism that may be involved in the development of insulin-resistance. In that research, the team found disruptions in various genes when a protein known as PPARγ undergoes phosphorylation (when a phosphate group is added to a protein) by the kinase Cdk5, an enzyme involved in a number of important sensory pathways.

The new study confirms that blockage of Cdk5's action on PPARG is a viable therapeutic approach for development of anti-diabetic agents. The new SR1664 compound is a potent binder to the nuclear receptor PPARG, but does not activate gene transcription via the receptor's normal mechanism.

While Griffin stressed the difficulty of fully assessing side effects of new compounds such as SR1664, the new research is extremely positive in that it clearly demonstrated fewer of the major well-documented side effects, such as weight gain or increased plasma volume, from SR1664 as compared to Avandia in diabetic mice.

While both the mice treated with Avandia and those treated with SR1664 demonstrated improved blood sugar levels, those treated with Avandia showed weight gain and increased fluid retention within a few days of beginning treatment; those being treated with SR1664 showed none of these side effects. In cell culture studies, SR1664 also appeared to have little effect on bone formation, nor did it increase fat generation in bone cells, another side effect of current therapies such as Avandia.

While S1664 likely will not be developed as a drug, it now serves as a molecular scaffolding for the creation of similar compounds with potential to treat diabetes. "With data in hand showing that our compounds are as efficacious as the currently marketed PPARG modulators, while demonstrating a significant improvement of side effects in limited studies, we are now advancing newer compounds with improved pharmaceutical properties into additional studies," Griffin said.

The first authors, denoted as equal contributors to this study, "Anti-Diabetic Actions of a Non-Agonist PPARG Ligand Blocking Cdk5-Mediated Phosphorylation," are Jang Hyun Choi and Alexander S. Banks of Dana-Farber Cancer Institute and Theodore M. Kamenecka and Scott A. Busby of The Scripps Research Institute. Other authors include Michael J. Chalmers, Naresh Kumar, Dana S. Kuruvilla, Youseung Shin, Yuanjun He, David Marciano, and Michael D. Cameron of Scripps Research; Dina Laznik of the Dana-Farber Cancer Institute; Michael J. Jurczak and Gerald I. Shulman of the Howard Hughes Medical Institute; Stephan C. Schürer and Dušica Vidović of the University of Miami; and John B. Bruning of Texas A&M University.

The study was supported by The National Institutes of Health.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: Cancer Dana-Farber Nature Immunology Scripps metabolic disorder weight gain

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>