Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scripps Research Scientists Devise Powerful New Method for Finding Therapeutic Antibodies

The Technique Hones and Expands the Power of Large Numbers

Scientists at The Scripps Research Institute have found a new technique that should greatly speed the discovery of medically and scientifically useful antibodies, immune system proteins that detect and destroy invaders such as bacteria and viruses.

New methods to discover antibodies are important because antibodies make up the fastest growing sector of human therapeutics; it is estimated that by 2014 the top-three selling drugs worldwide will be antibodies.

The new technique, described in an article this week published online ahead of print by the journal Proceedings of the National Academy of Sciences, enables researchers to search large libraries of antibodies and quickly select the ones with a desired biological effect. It also provides for the creation of unusual, asymmetric antibodies whose capabilities extend beyond those of natural antibodies. The Scripps Research scientists demonstrated the power of the technique by using it to find an asymmetric antibody that almost perfectly mimics the activity of erythropoietin (EPO), a medically valuable hormone.

“Traditionally we’ve looked at antibodies as tools for binding to specific targets, but we should view them more generally, as tools for probing and altering functions in cells,” said Richard Lerner, the Lita Annenberg Hazen Professor of Immunochemistry and member of the Department of Molecular Biology at Scripps Research who led the new study.

At the Vanguard
Lab-grown antibodies already represent a major part of the ongoing biotechnology revolution. Used as scientific probes or medical therapies, they recreate the versatility of natural antibodies, which are produced by immune cells in a vast diversity to bind to highly specific shapes on viruses, bacteria, and other targets.
Two decades ago, Lerner and his laboratory at Scripps Research, in parallel with the group of Sir Gregory Winter at the Laboratory of Molecular Biology in Britain, developed the first techniques for generating very large libraries of combinatorial antibodies and quickly isolating those that can bind to a desired target. Since then, such techniques have been used to find antibodies to treat cancer, arthritis, transplant rejection, and other conditions. Humira, an anti-inflammatory antibody that was discovered this way, is expected to be the world’s top-selling drug this year. Belimumab (Benlysta®) was approved by the US Food and Drug Administration in 2011 to treat lupus, becoming the first new drug to treat the chronic, life-threatening inflammatory disease in more than 50 years.

Current antibody-discovery techniques have one big drawback, however. Although they can rapidly find antibodies that bind tightly to a known target, they can’t rapidly determine which of those antibodies has useful biological activity. An antibody may bind tightly to a virus without affecting the virus’s ability to infect cells, for example, or it may bind to a cellular receptor without activating that receptor. With current techniques, determining the overall biological effect of a target-binding antibody typically requires further, painstaking analysis.

A More Direct Path

In the new study, Lerner and his postdoctoral researcher Hongkai Zhang sought a method for rapidly finding antibodies that have a desired effect on cells, not just a desired ability to bind to a target. As a proof of principle, they aimed to discover an antibody that could mimic the activity of EPO, a hormone that stimulates red blood cell production. Drugs that mimic EPO’s effect are commonly used to treat anemia and related conditions.

Zhang began by using traditional techniques to quickly sift through a large antibody library to find tens of thousands of antibodies that bind tightly to the EPO receptor. He then stepped beyond traditional techniques, by taking the genes that encoded these EPO-receptor-binding antibodies and inserting them into lentiviruses. Unlike the phage viruses used in traditional methods, lentiviruses can usefully infect mammalian cells, delivering their payloads – antibodies, in this case – into a more human-like cellular environment.

Zhang applied this new library of antibody-coding lentiviruses to a single, large culture of mammalian test cells. The cells were of a type that express EPO receptors and proliferate when these receptors are bound by EPO proteins – or by antibodies that effectively mimic EPO. Each of these cells could host only a few viral particles at most, so in this way Zhang was able to distribute the entire library of EPO-receptor-binding antibodies broadly within the cell culture. Zhang also cultured the cells in a special way that prevented antibodies secreted by one cell from spreading easily to nearby cells and muddying any cause-effect relationship. “This concern over the diffusion of antibodies in the culture was one of the factors that had discouraged other researchers from using such a technique,” said Zhang.

After the lentiviruses had delivered the antibodies to the cultured cells, Zhang was able to note which cells were proliferating the most – signifying the presence of antibodies that mimic EPO. To identify the antibodies responsible, Zhang had only to harvest these faster-growing cells and sequence the antibody genes inside them.

This method quickly yielded an antibody that in a further test showed about 60 percent of the biological activity of natural EPO – which was as good as any antibody EPO-mimic that had ever been described.
Opening the Door to the Unknown

But Zhang and Lerner also noted that many of the proliferating cells had been infected by multiple lentivirus particles, and contained sequences from more than one antibody. Puzzlingly, Zhang found that when he recreated antibodies from these sequences, and tested them individually or in combinations, they showed no significant EPO-mimicking effect. Further tests showed that the source of the EPO-mimicking effect in the test cells was an antibody that does not occur naturally.

An antibody of the type used in the study has a Y-shaped structure, normally with two identical binding arms. But the presence of multiple antibody genes within some of Zhang’s test cells meant that, in a few cases, antibodies assembled themselves with two different binding arms. One of these “bispecific” antibodies turned out to bind to the EPO receptor – which has two binding sites – in a way that very accurately mimics the binding of a natural EPO molecule. “It turned out to be 100 percent as potent as authentic EPO in further tests,” Zhang said.

The serendipitous finding represents another major innovation, for, in principle, it extends the medical and scientific antibody repertoire from the 100 billion or so known variants of same-armed antibodies to an astronomically higher number of bispecific variants. Experiments to test such variants will be limited by the maximum number of usable cells in cultures, but that number is still very high, on the order of 10 million. “That allows for a lot of unique binding events,” said Lerner. “You probably can get almost anything that way.”

Lerner emphasizes that this new antibody-engineering/discovery technique can be used not just against known targets such as the EPO receptor, but also against cellular functions involving targets that have not yet been found. “The real power of this technique is its ability to help us discover the unknown,” he said.

Another author of the study, titled “Selection of antibodies that regulate phenotype from intracellular combinatorial antibody libraries,” was Ian A. Wilson, the Hansen Professor of Structural Biology at Scripps Research and an expert on the structure of the EPO receptor. For more information on the paper, see

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, Scripps Research has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see
For information:
Office of Communications
Tel: 858-784-8134
Fax: 858-784-8136

Mika Ono | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Scientists develop tiny tooth-mounted sensors that can track what you eat
22.03.2018 | Tufts University

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>