Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017

Small study offers proof of concept and support for wider research

Some scientists have suspected that the most common form of ovarian cancer may originate in the fallopian tubes, the thin fibrous tunnels that connect the ovaries to the uterus. Now, results of a study of nine women suggest that the genomic roots of many ovarian tumors may indeed arise in the fallopian tubes, potentially providing insights into the origin of ovarian cancer and suggesting new ways for prevention and intervention of this disease.


A genomic study suggests that most ovarian cancers originate in the fallopian tube.

Credit: Carolyn Hruban

The fifth largest cause of cancer deaths in women, ovarian cancer is generally diagnosed too late in most patients and less than 30 percent of women with the disease survive beyond 10 years.

"Ovarian cancer treatments have not changed much in many decades, and this may be, in part, because we have been studying the wrong tissue of origin for these cancers," says study leader Victor Velculescu, M.D., Ph.D., a professor of oncology at the Johns Hopkins Kimmel Cancer Center. "If studies in larger groups of women confirm our finding that the fallopian tubes are the site of origin of most ovarian cancer, then this could result in a major change in the way we manage this disease for patients at risk."

For the new study, described in the October 23rd issue of Nature Communications, scientists at the Johns Hopkins Kimmel Cancer Center and Dana Farber Cancer Institute in Boston collected tissue samples containing normal cells, ovarian cancers, metastases that had spread elsewhere, and small cancers found in the fallopian tubes, which included single cell layers of cancer called "p53 signatures" and serous tubal intraepithelial carcinoma, or STIC lesions. All of the samples came from five women who had been diagnosed with high grade serous ovarian tumors, the type of cancer that accounts for three quarters of the estimated 22,000 women diagnosed with ovarian cancers each year in the United States.

The scientists also collected samples from STIC lesions and normal cells from four women who had undergone prophylactic removal of their ovaries and fallopian tubes because of hereditary gene mutations in the ovarian and breast cancer-linked BRCA gene, or -- in one case -- a pelvic mass.

Because some of the cancers were extremely small -- some lesions were only one cell-layer thick -- postdoctoral fellows Eniko Papp from Johns Hopkins and S. Intidhar Labidi-Galy from Dana Farber, together with Velculescu and co-author Ronny Drapkin, M.D., Ph.D., formerly of the Dana Farber Cancer Institute and now at the University of Pennsylvania, developed a way to isolate the relatively few cancer cells from the larger mass of adjacent normal cells.

The researchers stained the small cancers to highlight the cells containing mistakes in the p53 gene, which have long been linked to the onset of many cancer types. Then, the scientists used an infrared laser to peel off the highlighted area of cancer cells. Next, the scientists performed what is known as whole-exome genome sequencing -- sequencing all known genes -- on all of the samples to create a catalog of the genetic blueprint of the protein coding genes in the cells' DNA. Without this approach, the results of genomic sequencing would have been swamped with DNA from normal cells, making it difficult to detect cancer-linked DNA errors, Papp says.

The Johns Hopkins and Dana Farber research teams then searched for mistakes in the DNA sequences, including areas where one DNA molecule was switched for another, and spots where large regions of DNA in a particular chromosome were altered.

The results showed that all nine patients lost identical regions of chromosome 17, where the cancer-linked p53 gene is located, in each of the cancer samples, including the early-stage STIC lesions, suggesting that the "misprinted" or flawed p53 gene is an early step in ovarian cancer development.

All nine patients also had lost portions of chromosomes containing one or both BRCA1 and BRCA2 genes, which have long been linked to hereditary as well as sporadic breast and ovarian cancers. Four patients had deletions in chromosome 10 where another cancer-linked gene called PTEN is located.

By using results of their genomic studies, the team estimated the fraction of cancer cells in which a mutation was likely to occur. Reasoning that there would likely be fewer mutations in the original cancer cells than in their successors, the scientists created an evolutionary tree among the ovarian cancers in the five women. They say the results led them to conclude that each of the women's cancers began with mistakes in STIC or earlier lesions located in the fallopian tubes. Additional DNA mistakes were found in cancer cells lodged in the ovary near the fallopian tube and in metastatic sites. Overall, they say, these analyses suggest that the development of cancer in the ovaries is the result of a seeding event from the initial tumor in the fallopian tubes that already contains the key DNA changes needed for this disease.

To determine the length of time it likely took for the study patients' cancers to form, the scientists used multiple statistical models that took into account the patient's age when they were diagnosed and the total number of mutations in each patient's cancer. Their results indicate that ovarian cancers developed from STIC lesions within an average of 6.5 years among the patients analyzed.

However, when the patients' cancers reached their ovaries, the progression to metastatic disease was estimated to have occurred rapidly, within two years, on average. "This aligns with what we see in the clinic, that newly-diagnosed ovarian cancer patients most often already have widespread disease," says Velculescu.

Velculescu cautions that medical practice may not change much until additional studies validate their findings, and there are ongoing clinical trials studying the removal of fallopian tubes instead of ovaries in women with cancer-causing, hereditary BRCA1 and BRCA2 mutations. Velculescu also notes that the fallopian-first theory may not apply to other, less common types of ovarian cancer.

A confirmation of their work, says Velculescu, may help spare some women removal of their ovaries and the loss of hormones that leads to increased risk of heart and other diseases. He adds, "The window of time that exists between the development of a STIC lesion and metastatic disease highlights the importance of new screening approaches such as liquid biopsy methods for early detection of ovarian cancer."

###

Additional Johns Hopkins scientific collaborators include Dorothy Hallberg, Noushin Niknafs, Ie-Ming Shih, Tian-Li Wang, Robert Kruman, Vilmos Adleff, Michael Noe, Rohit Bhattacharya, Jillian Phallen, Carolyn A. Hruban, Jillian Phallen, Carolyn Hruban, Laura D. Wood, Robert B. Scharpf, and Rachel Karchin.

Additional researchers from Dana-Farber include Marian Novak and Cecile L. Maire; Michelle S. Hirsch, Douglas I. Lin and Michaela Bowden from Brigham and Women's Hospital and Harvard Medical School; Lauren Schwartz from the University of Pennsylvania; and Jean-Christophe Tille from Geneva University Hospital; Ayse Ayhan from Seirei Mikatahara Hospital; and Siân Jones from Personal Genome Diagnostics.

The research was funded by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation, the Commonwealth Foundation, National Institutes of Health's National Cancer Institute (CA121113, CA006973, CA083636, CA152990, CA200469), the Department of Defense, the Honorable Tina Brozman Foundation for Ovarian Cancer Research, the SU2C-DCS International Translational Cancer Research Dream Team Grant, the Foundation for Women's Wellness, and the Richard W. TeLinde Gynecologic Pathology Laboratory Endowment.

Velculescu is a founder of Personal Genome Diagnostics and is a member of its Scientific Advisory Board and Board of Directors. Velculescu owns Personal Genome Diagnostics stock, which is subject to certain restrictions under university policy. The terms of this arrangement are managed by The Johns Hopkins University in accordance with its conflict of interest policies.

Media Contact

Valerie Matthews-Mehl
mehlva@jhmi.edu
410-614-2916

 @HopkinsMedicine

http://www.hopkinsmedicine.org 

Valerie Matthews-Mehl | EurekAlert!

Further reports about: DNA Johns Hopkins cancer cells fallopian tubes ovarian ovarian cancer tubes

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Flying: Efficiency thanks to Lightweight Air Nozzles

23.10.2017 | Materials Sciences

Salmonella as a tumour medication

23.10.2017 | Life Sciences

50th Anniversary at JULABO GmbH

23.10.2017 | Press release

VideoLinks
B2B-VideoLinks
More VideoLinks >>>