Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversing effects of altered enzyme may fight brain tumor growth

15.04.2009
An international team of scientists from the Moores Cancer Center at the University of California, San Diego, the University of North Carolina and several institutions in China have explained how a gene alteration can lead to the development of a type of brain cancer, and they have identified a compound that could staunch the cancer's growth.

The researchers, led by Kun-Liang Guan, PhD, professor of pharmacology at the UC San Diego School of Medicine, have shown that when a mutated enzyme fails to do its job, the development of tumor-feeding blood vessels increases, allowing more nutrients and oxygen to fuel cancer growth.

They have also shown in the laboratory that they could reverse the mutant enzyme's effects, effectively blocking this process, called angiogenesis, and provide a potential future treatment strategy against some types of brain tumors. They reported their findings in the current issue of the journal Science.

According to Guan, researchers have known that a mutation in the gene encoding the enzyme, isocitrate dehydrogenase (IDH1), contributed to certain brain tumors called low grade gliomas and secondary glioblastomas, but no one understood how. Guan, Yue Xiong, PhD, at the University of North Carolina and their co-investigators have now shown that this is because alterations in a specific gene, IDH1, impairs the body's ability to keep a tumor growth-promoting protein, HIF-1 alpha, in check.

The IDH1 enzyme works to produce a compound called alpha-KG, which is required for HIF-1 breakdown. Without that control, HIF-1 can run amok, promoting angiogenesis and tumor growth. The team was able to reverse this HIF-1 alpha effect by adding a modified form of alpha-KG to brain tumor cells in culture.

"This suggests a direction to exploit cell permeable alpha-KG for potential treatment of brain cancer patients with an IDH1 mutation," Guan said.

He added that IDH1 appears to function as a tumor suppressor gene that when altered – and turned off – can contribute to tumor formation through the HIF-1 pathway. But Guan noted, "IDH1 is not your usual suspect as a cancer gene."

He explained that the alteration in IDH1 is a substitution of an amino acid in one copy of the gene without losing the other normal copy (every gene in normal human cells has two copies), which is different from most tumor suppressor genes. Most either have genetic material that is deleted or truncated – not a single amino acid substitution.

Guan, Xiong and their group are hopeful about their findings. Understanding mechanisms behind the development of such brain tumors is critical to clinical advances, Guan said. "Because of their ability to reverse HIF-1 levels, drugs mimicking alpha-KG may be worth exploring as possible therapies for these types of gliomas."

Other co-authors include: Shimin Zhao, Yan Lin, Wei Xu, Wenqing Jiang, Zhengyu Zha, Pu Wang, Wei Yu, Qunying Lei, Fudan University, Shanghai, China; Zhiqiang Li, Lingling Gong, Wuhan University, Wuhan, China; Yingjie Peng, Jianping Ding, Chinese Academy of Sciences, Shanghai. Guan and Xiong both have appointments at Fudan University.

The Moores UCSD Cancer Center is one of the nation's 41 National Cancer Institute-designated Comprehensive Cancer Centers, combining research, clinical care and community outreach to advance the prevention, treatment and cure of cancer.

Steve Benowitz | EurekAlert!
Further information:
http://www.ucsd.edu
http://www.cancer.ucsd.edu

More articles from Health and Medicine:

nachricht Cardiac diseases: when less is more
30.03.2017 | Universitätsspital Bern

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>