Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversing effects of altered enzyme may fight brain tumor growth

15.04.2009
An international team of scientists from the Moores Cancer Center at the University of California, San Diego, the University of North Carolina and several institutions in China have explained how a gene alteration can lead to the development of a type of brain cancer, and they have identified a compound that could staunch the cancer's growth.

The researchers, led by Kun-Liang Guan, PhD, professor of pharmacology at the UC San Diego School of Medicine, have shown that when a mutated enzyme fails to do its job, the development of tumor-feeding blood vessels increases, allowing more nutrients and oxygen to fuel cancer growth.

They have also shown in the laboratory that they could reverse the mutant enzyme's effects, effectively blocking this process, called angiogenesis, and provide a potential future treatment strategy against some types of brain tumors. They reported their findings in the current issue of the journal Science.

According to Guan, researchers have known that a mutation in the gene encoding the enzyme, isocitrate dehydrogenase (IDH1), contributed to certain brain tumors called low grade gliomas and secondary glioblastomas, but no one understood how. Guan, Yue Xiong, PhD, at the University of North Carolina and their co-investigators have now shown that this is because alterations in a specific gene, IDH1, impairs the body's ability to keep a tumor growth-promoting protein, HIF-1 alpha, in check.

The IDH1 enzyme works to produce a compound called alpha-KG, which is required for HIF-1 breakdown. Without that control, HIF-1 can run amok, promoting angiogenesis and tumor growth. The team was able to reverse this HIF-1 alpha effect by adding a modified form of alpha-KG to brain tumor cells in culture.

"This suggests a direction to exploit cell permeable alpha-KG for potential treatment of brain cancer patients with an IDH1 mutation," Guan said.

He added that IDH1 appears to function as a tumor suppressor gene that when altered – and turned off – can contribute to tumor formation through the HIF-1 pathway. But Guan noted, "IDH1 is not your usual suspect as a cancer gene."

He explained that the alteration in IDH1 is a substitution of an amino acid in one copy of the gene without losing the other normal copy (every gene in normal human cells has two copies), which is different from most tumor suppressor genes. Most either have genetic material that is deleted or truncated – not a single amino acid substitution.

Guan, Xiong and their group are hopeful about their findings. Understanding mechanisms behind the development of such brain tumors is critical to clinical advances, Guan said. "Because of their ability to reverse HIF-1 levels, drugs mimicking alpha-KG may be worth exploring as possible therapies for these types of gliomas."

Other co-authors include: Shimin Zhao, Yan Lin, Wei Xu, Wenqing Jiang, Zhengyu Zha, Pu Wang, Wei Yu, Qunying Lei, Fudan University, Shanghai, China; Zhiqiang Li, Lingling Gong, Wuhan University, Wuhan, China; Yingjie Peng, Jianping Ding, Chinese Academy of Sciences, Shanghai. Guan and Xiong both have appointments at Fudan University.

The Moores UCSD Cancer Center is one of the nation's 41 National Cancer Institute-designated Comprehensive Cancer Centers, combining research, clinical care and community outreach to advance the prevention, treatment and cure of cancer.

Steve Benowitz | EurekAlert!
Further information:
http://www.ucsd.edu
http://www.cancer.ucsd.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>