Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversing effects of altered enzyme may fight brain tumor growth

15.04.2009
An international team of scientists from the Moores Cancer Center at the University of California, San Diego, the University of North Carolina and several institutions in China have explained how a gene alteration can lead to the development of a type of brain cancer, and they have identified a compound that could staunch the cancer's growth.

The researchers, led by Kun-Liang Guan, PhD, professor of pharmacology at the UC San Diego School of Medicine, have shown that when a mutated enzyme fails to do its job, the development of tumor-feeding blood vessels increases, allowing more nutrients and oxygen to fuel cancer growth.

They have also shown in the laboratory that they could reverse the mutant enzyme's effects, effectively blocking this process, called angiogenesis, and provide a potential future treatment strategy against some types of brain tumors. They reported their findings in the current issue of the journal Science.

According to Guan, researchers have known that a mutation in the gene encoding the enzyme, isocitrate dehydrogenase (IDH1), contributed to certain brain tumors called low grade gliomas and secondary glioblastomas, but no one understood how. Guan, Yue Xiong, PhD, at the University of North Carolina and their co-investigators have now shown that this is because alterations in a specific gene, IDH1, impairs the body's ability to keep a tumor growth-promoting protein, HIF-1 alpha, in check.

The IDH1 enzyme works to produce a compound called alpha-KG, which is required for HIF-1 breakdown. Without that control, HIF-1 can run amok, promoting angiogenesis and tumor growth. The team was able to reverse this HIF-1 alpha effect by adding a modified form of alpha-KG to brain tumor cells in culture.

"This suggests a direction to exploit cell permeable alpha-KG for potential treatment of brain cancer patients with an IDH1 mutation," Guan said.

He added that IDH1 appears to function as a tumor suppressor gene that when altered – and turned off – can contribute to tumor formation through the HIF-1 pathway. But Guan noted, "IDH1 is not your usual suspect as a cancer gene."

He explained that the alteration in IDH1 is a substitution of an amino acid in one copy of the gene without losing the other normal copy (every gene in normal human cells has two copies), which is different from most tumor suppressor genes. Most either have genetic material that is deleted or truncated – not a single amino acid substitution.

Guan, Xiong and their group are hopeful about their findings. Understanding mechanisms behind the development of such brain tumors is critical to clinical advances, Guan said. "Because of their ability to reverse HIF-1 levels, drugs mimicking alpha-KG may be worth exploring as possible therapies for these types of gliomas."

Other co-authors include: Shimin Zhao, Yan Lin, Wei Xu, Wenqing Jiang, Zhengyu Zha, Pu Wang, Wei Yu, Qunying Lei, Fudan University, Shanghai, China; Zhiqiang Li, Lingling Gong, Wuhan University, Wuhan, China; Yingjie Peng, Jianping Ding, Chinese Academy of Sciences, Shanghai. Guan and Xiong both have appointments at Fudan University.

The Moores UCSD Cancer Center is one of the nation's 41 National Cancer Institute-designated Comprehensive Cancer Centers, combining research, clinical care and community outreach to advance the prevention, treatment and cure of cancer.

Steve Benowitz | EurekAlert!
Further information:
http://www.ucsd.edu
http://www.cancer.ucsd.edu

More articles from Health and Medicine:

nachricht New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome
28.07.2017 | University of California - San Diego

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>