Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers want to turn acid-loving microbes into safe drug-carriers

05.11.2015

Usually the microbe S. islandicus is found in hot and acidic volcanic springs, but now the microbe has also found its way to the labs of University of Southern Denmark. Here researchers have for the first time showed that the exotic microbe is capable of delivering drugs to the human body.


This is the natural environment of S. islandicus, Kamchatka Peninsula

Credit: Kamchatka Visions

The microbe S. islandicus has a strange and unique talent for thriving in acidic environments. This talent would allow the microbe to safely pass through the human stomach, where harsh acidic conditions rule, and this makes the microbe interesting for scientists working with delivering drugs to the human body.

"One of the major challenges in pharmacy is to find ways to carry and protect drugs on their passage through the stomach. Many drugs may be absorbed through the intestines, so it would be a great help to be able to transport drugs safely through the stomach to the intestines", explains Sara Munk Jensen, Ph.D. student at both the Nordic Center for Earth Evolution (NordCEE), Department of Biology and the Department of Physics, Chemistry and Pharmacy, University of Southern Denmark (SDU).

Transport and protect drugs

Jensen has just completed her Ph.D. work on how to use lipids from the cell membranes of extremophilic microorganisms to design drug carriers that transport and protect drugs in the human body.

This is relevant for different drugs as growth hormones, vaccines and insulin. Many diabetics need to daily inject insulin directly into their body, and they would benefit greatly by taking insulin in a tablet instead. Not only is it easier to take a tablet than inject; when insulin is absorbed from the small intestine it is released into the body in a more natural way than when injected, and this has the potential to improve the patient's treatment.

They love it hot

Here enters the acid-loving microbe S. islandicus the scene. S. islandicus is a microorganism, which resembles bacteria, but it is just as different from a bacterium as humans are. S. islandicus is an extremophilic archaeon, meaning that it loves extreme conditions. Some extremophile archaea love to live in oxygen-free environments, others in saline environments, and S. islandicus requires an environment that is 75-80 degrees Celsius hot and has a pH of 2-3. These living conditions are found in volcanic springs in places like Iceland, Italy, Russia and North America.

Jensen and her colleagues now report in the journal International Journal of Pharmaceutics that they have managed to use S. islandicus to construct a nano-capsule that can transport drugs safely through the stomach.

Loading molecules with dye

The researchers isolated lipids from the cell membrane of S. islandicus in the laboratory and used these to construct liposomes (synthetic fat capsules). Liposomes are available in many different forms - some are e.g. used in cosmetics to transport nourishing substances into the skin. After construction, the new molecules were loaded with a dye and placed in solutions equivalent to the acidic environment in the stomach. After one and a half hours it was time to see if some of the liposomes had survived the exposure and if they still retained their content of dye. One and a half hours app. equals the time that a tablet must be able to withstand the hostile environment of the stomach before natural peristaltics pushes it forward to the intestines.

Some of the liposomes in the experiment were destroyed -- but not all. Ca. 10 pct. survived the strong acidic solution and still contained the dye after one and a half hour.

Jensen is satisfied with this result:

"We started with a completely crude extract of membrane molecules from S. islandicus. Normally, rather pure compounds are employed when making liposomes, but here I took all the fat molecules to see how far you can get with crude, non-purified material. If 10 pct. of the liposomes created on this basis can survive, then it is plausible that even more will survive if we begin to purify the molecules", explains Jensen.

She believes that some 85 pct. the liposomes need to survive the journey through the stomach before drug companies can start developing oral peptide-drugs like insulin, vaccines, etc.

What did the researchers do in the lab?

S. islandicus was grown for four days at 75 degrees Celsius. The researchers isolated all the cell-membrane molecules from the culture and combined them with conventional phospholipids (special fats from egg yolk or soybean oil) and cholesterol in order to make liposomes. The mixture was: 18 pct. S. islandicus fat molecules and 78 pct. phospholipids/cholesterol. The constructed liposomes were loaded with a dye, so that the researchers could keep track of whether the liposomes would last or be destroyed when exposed to bile salts from gastric juice. The liposomes were tested at a low and a high bile salt concentration. In the low concentration 75 pct. of the liposomes were still intact after 1.5 hours. But only 10 pct. were still intact at the high concentration. Both the low and high concentrations are within the range that is natural in a normal human stomach, namely 4 and 8 mM (one thousandth of the number of molecules per liter). In fact, the concentration in normal healthy individuals varies between 0.3 and 9.6 mM.

###

Ref International Journal of Pharmaceutics, Volume 493, Issues 1-2, 30 September 2015, Pages 63-69. Liposomes containing lipids from Sulfolobus islandicus with state intestinal bile salts: An approach to oral drug delivery? Sara Munk Jensena, b, Camilla Jahn Christensenb, 1, Julie Maria Petersenb, 1, Alexander H. Treuscha, Martin Brandl, b. a Department of Biology and Nordic Center for Earth Evolution, University of Southern Denmark. b Department of Physics, Chemistry and Pharmacy, University of Southern Denmark.

Photos S. islandicus in its natural environment on the Kamchatka peninsula (credit Visions of Kamchatka) + photo of S. islandicus grown in SDU's laboratory (credit Sara Munk Jensen).

Contact:

Sara Munk Jensen
45-6550-2739
saramj@biology.sdu.dk

Media Contact

Birgitte Svennevig
birs@sdu.dk

http://www.sdu.dk/

Birgitte Svennevig | EurekAlert!

Further reports about: acidic concentration drugs human body liposomes microbe microbes stomach survive

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>