Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers take further steps toward development of a vaccine against tick-transmitted disease

30.07.2014

Virginia Commonwealth University School of Medicine researchers have made an important advancement toward developing a vaccine against the debilitating and potentially deadly tick-transmitted disease, human granulocytic anaplasmosis (HGA).

During the past several years, experts have seen a steady rise in the incidence of human infections caused by tick-transmitted bacterial pathogens — making the need for a vaccine critical. Successful vaccine development hinges on knowing what to target to prevent disease, and the VCU team has identified three such proteins on the surface of the HGA agent.


Jason A. Carlyon, Ph.D.

HGA is caused by a bacterium called Anaplasma phagocytophilum. HGA is transmitted by the same ticks that transmit Lyme disease, and it is the second most-common tick-borne disease in the United States. Between 2003 and 2012, the number of cases reported to the Centers for Disease Control and Prevention increased more than sixfold. However, evidence indicates that many more cases go undocumented. The disease is also found in Europe and Asia and can affect dogs, cats, horses and sheep.

In a study, published in the August issue of the journal Cellular Microbiology, researchers report the discovery of a protein called A. phagocytophilum invasion protein A, or AipA, found on the surface of the bacterium. It is a key player in mammalian cell invasion. They identified the specific region of this protein that is necessary for infection.

... more about:
»Anaplasma »Commonwealth »HGA »Medicine »VCU »proteins »steps

Further, they discovered that AipA works together with two other previously identified A. phagocytophilum surface proteins, OmpA and Asp14, to enable the pathogen to optimally invade host cells.

“This is an important finding because it highlights that pathogens use cooperative, even redundant mechanisms to invade host cells,” said lead investigator Jason A. Carlyon, Ph.D., associate professor and a George and Lavinia Blick Scholar in the Department of Microbiology and Immunologyin the VCU School of Medicine.

“Based on these findings, an effective preventative or therapeutic approach would be best achieved by targeting all three factors, rather than just one. Our research is a promising lead towards vaccine development against granulocytic anaplasmosisand is a blueprint for developing prophylactic and therapeutic approaches against pathogens that use multiple surface proteins to infect,” he said.

“Furthermore, we have determined that humans and animals make antibodies against AipA, OmpA, and Asp14 during granulocytic anaplasmosis, which means they could be used to develop effective diagnostic tests for the disease.”

Carlyon is working with Richard T. Marconi, Ph.D., professor of microbiology and immunology in the VCU School of Medicine, to translate these findings into a vaccine against granulocytic anaplasmosis. A patent application has been filed and the technology is available for licensure. For further information, contact VCU Innovation Gateway ott@vcu.edu.

This study builds on previously published work from the Carlyon lab. In 2012 and 2013, the team identified OmpA and Asp14, and determined that they worked together to promote A. phagocytophilum infection.

But, at that time, they also determined that a piece of the puzzle was missing.

“While using antibodies to target both did significantly reduce infection of host cells, the blocking was incomplete. This suggested to us the involvement of at least one additional Anaplasma protein, which, in this study, we identified as AipA,” Carlyon said.

Next, the team will identify the key regions necessary for infection for surface proteins, OmpA and Asp14, and then validate whether targeting the regions of all three proteins prevents infection using a mouse model. According to Carlyon, the information could be used to develop a “trifecta vaccine” to target the relevant regions of the three proteins, and thereby provide effective protection against infection.

The findings are highlighted as the Editor’s Choice in the August print issue of the journal Cellular Microbiology.

The study, titled “Anaplasma phagocytophilum surface protein AipA mediates invasion of mammalian host cells,” appeared online on April 3.

Read the study abstract here: http://onlinelibrary.wiley.com/doi/10.1111/cmi.12286/abstract.

Carlyon collaborated with researchers from VCU, University of California at Davis and Yale University.

This work was supported by the National Institutes of Health grants R01 AI072683, R01 AI67830, and R01 AI141440; and the United States Department of Commerce Economic Development Administration. The VCU Flow Cytometry and Imaging Shared Resource Facility is supported in part by funding from NIH-NCI Cancer Center support grant 5P30 CA016059.

About VCU and VCU Medical Center

Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located in downtown Richmond, VCU enrolls more than 31,000 students in 223 degree and certificate programs in the arts, sciences and humanities. Sixty-eight of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University comprise VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

Sathya Achia Abraham | Eurek Alert!
Further information:
http://news.vcu.edu/article/Researchers_take_further_steps_toward_development_of_a_vaccine

Further reports about: Anaplasma Commonwealth HGA Medicine VCU proteins steps

More articles from Health and Medicine:

nachricht Columbia Engineering team develops targeted drug delivery to lung
03.09.2015 | Columbia University School of Engineering and Applied Science

nachricht Reward, aversion behaviors activated through same brain pathways
03.09.2015 | Washington University School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Lighter with Laser Welding

03.09.2015 | Process Engineering

For 2-D boron, it's all about that base

03.09.2015 | Materials Sciences

Phagraphene, a 'relative' of graphene, discovered

03.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>