Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers take further steps toward development of a vaccine against tick-transmitted disease

30.07.2014

Virginia Commonwealth University School of Medicine researchers have made an important advancement toward developing a vaccine against the debilitating and potentially deadly tick-transmitted disease, human granulocytic anaplasmosis (HGA).

During the past several years, experts have seen a steady rise in the incidence of human infections caused by tick-transmitted bacterial pathogens — making the need for a vaccine critical. Successful vaccine development hinges on knowing what to target to prevent disease, and the VCU team has identified three such proteins on the surface of the HGA agent.


Jason A. Carlyon, Ph.D.

HGA is caused by a bacterium called Anaplasma phagocytophilum. HGA is transmitted by the same ticks that transmit Lyme disease, and it is the second most-common tick-borne disease in the United States. Between 2003 and 2012, the number of cases reported to the Centers for Disease Control and Prevention increased more than sixfold. However, evidence indicates that many more cases go undocumented. The disease is also found in Europe and Asia and can affect dogs, cats, horses and sheep.

In a study, published in the August issue of the journal Cellular Microbiology, researchers report the discovery of a protein called A. phagocytophilum invasion protein A, or AipA, found on the surface of the bacterium. It is a key player in mammalian cell invasion. They identified the specific region of this protein that is necessary for infection.

... more about:
»Anaplasma »Commonwealth »HGA »Medicine »VCU »proteins »steps

Further, they discovered that AipA works together with two other previously identified A. phagocytophilum surface proteins, OmpA and Asp14, to enable the pathogen to optimally invade host cells.

“This is an important finding because it highlights that pathogens use cooperative, even redundant mechanisms to invade host cells,” said lead investigator Jason A. Carlyon, Ph.D., associate professor and a George and Lavinia Blick Scholar in the Department of Microbiology and Immunologyin the VCU School of Medicine.

“Based on these findings, an effective preventative or therapeutic approach would be best achieved by targeting all three factors, rather than just one. Our research is a promising lead towards vaccine development against granulocytic anaplasmosisand is a blueprint for developing prophylactic and therapeutic approaches against pathogens that use multiple surface proteins to infect,” he said.

“Furthermore, we have determined that humans and animals make antibodies against AipA, OmpA, and Asp14 during granulocytic anaplasmosis, which means they could be used to develop effective diagnostic tests for the disease.”

Carlyon is working with Richard T. Marconi, Ph.D., professor of microbiology and immunology in the VCU School of Medicine, to translate these findings into a vaccine against granulocytic anaplasmosis. A patent application has been filed and the technology is available for licensure. For further information, contact VCU Innovation Gateway ott@vcu.edu.

This study builds on previously published work from the Carlyon lab. In 2012 and 2013, the team identified OmpA and Asp14, and determined that they worked together to promote A. phagocytophilum infection.

But, at that time, they also determined that a piece of the puzzle was missing.

“While using antibodies to target both did significantly reduce infection of host cells, the blocking was incomplete. This suggested to us the involvement of at least one additional Anaplasma protein, which, in this study, we identified as AipA,” Carlyon said.

Next, the team will identify the key regions necessary for infection for surface proteins, OmpA and Asp14, and then validate whether targeting the regions of all three proteins prevents infection using a mouse model. According to Carlyon, the information could be used to develop a “trifecta vaccine” to target the relevant regions of the three proteins, and thereby provide effective protection against infection.

The findings are highlighted as the Editor’s Choice in the August print issue of the journal Cellular Microbiology.

The study, titled “Anaplasma phagocytophilum surface protein AipA mediates invasion of mammalian host cells,” appeared online on April 3.

Read the study abstract here: http://onlinelibrary.wiley.com/doi/10.1111/cmi.12286/abstract.

Carlyon collaborated with researchers from VCU, University of California at Davis and Yale University.

This work was supported by the National Institutes of Health grants R01 AI072683, R01 AI67830, and R01 AI141440; and the United States Department of Commerce Economic Development Administration. The VCU Flow Cytometry and Imaging Shared Resource Facility is supported in part by funding from NIH-NCI Cancer Center support grant 5P30 CA016059.

About VCU and VCU Medical Center

Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located in downtown Richmond, VCU enrolls more than 31,000 students in 223 degree and certificate programs in the arts, sciences and humanities. Sixty-eight of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University comprise VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

Sathya Achia Abraham | Eurek Alert!
Further information:
http://news.vcu.edu/article/Researchers_take_further_steps_toward_development_of_a_vaccine

Further reports about: Anaplasma Commonwealth HGA Medicine VCU proteins steps

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>