Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers take further steps toward development of a vaccine against tick-transmitted disease

30.07.2014

Virginia Commonwealth University School of Medicine researchers have made an important advancement toward developing a vaccine against the debilitating and potentially deadly tick-transmitted disease, human granulocytic anaplasmosis (HGA).

During the past several years, experts have seen a steady rise in the incidence of human infections caused by tick-transmitted bacterial pathogens — making the need for a vaccine critical. Successful vaccine development hinges on knowing what to target to prevent disease, and the VCU team has identified three such proteins on the surface of the HGA agent.


Jason A. Carlyon, Ph.D.

HGA is caused by a bacterium called Anaplasma phagocytophilum. HGA is transmitted by the same ticks that transmit Lyme disease, and it is the second most-common tick-borne disease in the United States. Between 2003 and 2012, the number of cases reported to the Centers for Disease Control and Prevention increased more than sixfold. However, evidence indicates that many more cases go undocumented. The disease is also found in Europe and Asia and can affect dogs, cats, horses and sheep.

In a study, published in the August issue of the journal Cellular Microbiology, researchers report the discovery of a protein called A. phagocytophilum invasion protein A, or AipA, found on the surface of the bacterium. It is a key player in mammalian cell invasion. They identified the specific region of this protein that is necessary for infection.

... more about:
»Anaplasma »Commonwealth »HGA »Medicine »VCU »proteins »steps

Further, they discovered that AipA works together with two other previously identified A. phagocytophilum surface proteins, OmpA and Asp14, to enable the pathogen to optimally invade host cells.

“This is an important finding because it highlights that pathogens use cooperative, even redundant mechanisms to invade host cells,” said lead investigator Jason A. Carlyon, Ph.D., associate professor and a George and Lavinia Blick Scholar in the Department of Microbiology and Immunologyin the VCU School of Medicine.

“Based on these findings, an effective preventative or therapeutic approach would be best achieved by targeting all three factors, rather than just one. Our research is a promising lead towards vaccine development against granulocytic anaplasmosisand is a blueprint for developing prophylactic and therapeutic approaches against pathogens that use multiple surface proteins to infect,” he said.

“Furthermore, we have determined that humans and animals make antibodies against AipA, OmpA, and Asp14 during granulocytic anaplasmosis, which means they could be used to develop effective diagnostic tests for the disease.”

Carlyon is working with Richard T. Marconi, Ph.D., professor of microbiology and immunology in the VCU School of Medicine, to translate these findings into a vaccine against granulocytic anaplasmosis. A patent application has been filed and the technology is available for licensure. For further information, contact VCU Innovation Gateway ott@vcu.edu.

This study builds on previously published work from the Carlyon lab. In 2012 and 2013, the team identified OmpA and Asp14, and determined that they worked together to promote A. phagocytophilum infection.

But, at that time, they also determined that a piece of the puzzle was missing.

“While using antibodies to target both did significantly reduce infection of host cells, the blocking was incomplete. This suggested to us the involvement of at least one additional Anaplasma protein, which, in this study, we identified as AipA,” Carlyon said.

Next, the team will identify the key regions necessary for infection for surface proteins, OmpA and Asp14, and then validate whether targeting the regions of all three proteins prevents infection using a mouse model. According to Carlyon, the information could be used to develop a “trifecta vaccine” to target the relevant regions of the three proteins, and thereby provide effective protection against infection.

The findings are highlighted as the Editor’s Choice in the August print issue of the journal Cellular Microbiology.

The study, titled “Anaplasma phagocytophilum surface protein AipA mediates invasion of mammalian host cells,” appeared online on April 3.

Read the study abstract here: http://onlinelibrary.wiley.com/doi/10.1111/cmi.12286/abstract.

Carlyon collaborated with researchers from VCU, University of California at Davis and Yale University.

This work was supported by the National Institutes of Health grants R01 AI072683, R01 AI67830, and R01 AI141440; and the United States Department of Commerce Economic Development Administration. The VCU Flow Cytometry and Imaging Shared Resource Facility is supported in part by funding from NIH-NCI Cancer Center support grant 5P30 CA016059.

About VCU and VCU Medical Center

Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located in downtown Richmond, VCU enrolls more than 31,000 students in 223 degree and certificate programs in the arts, sciences and humanities. Sixty-eight of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University comprise VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

Sathya Achia Abraham | Eurek Alert!
Further information:
http://news.vcu.edu/article/Researchers_take_further_steps_toward_development_of_a_vaccine

Further reports about: Anaplasma Commonwealth HGA Medicine VCU proteins steps

More articles from Health and Medicine:

nachricht An experimental Alzheimer's drug reverses genetic changes thought to spur the disease
04.05.2016 | Rockefeller University

nachricht Research points to a new treatment for pancreatic cancer
04.05.2016 | Purdue University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>