Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reveal underlying mechanism of powerful chemotherapy for prostate cancer treatment

18.09.2012
Study suggests role of taxane-based chemotherapy drugs may be underestimated and should be re-examined to improve the drug's effectiveness

The power of taxane-based chemotherapy drugs are misunderstood and potentially underestimated, according to researchers at Weill Cornell Medical College in the September 15 issue of the journal Cancer Research.

Most physicians and investigators believe that taxane chemotherapy (paclitaxel, docetaxel and cabazitaxel) just does one thing -- stop a cancer cell from dividing -- but the team of Weill Cornell scientists have revealed it acts much more powerfully and broadly, especially against prostate cancer.

"Taxanes are one of the best class of chemotherapy drugs that we can use to treat our cancer patients, but while they are effective against a wide range of tumors, they don't work in all of them, and often patients become resistant," says the study's senior investigator, Dr. Paraskevi Giannakakou, an associate professor of pharmacology in medicine and pharmacology and director of laboratory research for the Division of Hematology and Medical Oncology at Weill Cornell. "However, our new understanding of the precise action of taxanes in a cancer cell may help us overcome drug insensitivity or acquired resistance to the drugs and design therapies that can be used in combination with them to improve cancer control."

In their study, the researchers stress that investigators must shift their attention away from taxane's function during cell division to the drugs' effects on halting the everyday movement of proteins and protein-to-protein communication within cancer cells -- and to understanding how and why a cancer cell can still survive. Researchers suggest that cancers that are insensitive to taxanes -- or those that have become resistant to them -- may, for example, switch to alternate forms of "transportation" to shuttle proteins within cells in a way that does not depend on the cell's skeletal structure which is the target of taxane therapy.

Researchers showed in the study that the androgen receptor (AR), which is a driving force in prostate cancer growth and metastasis, "moves" along microtubules to be transported to the nucleus. When a taxane binds microtubules, it stops AR from traveling, thus inhibiting its activity. Taxane chemotherapy drugs such as paclitaxel, docetaxel and cabazitaxel work by binding tubulin, a protein that makes up microtubules. Microtubules are the rope-like channels that provide both a skeletal structure to cells as well as provide "highways" along which molecules, such as proteins, RNA complexes and vesicles, can travel from one part of the cell to another and interact with each other.

"Microtubules are the highly dynamic network of wires within cells, and when taxanes are used, the network stops moving," says Dr. Giannakakou. This is best observed when cancer cells attempt to divide, she says. "It is easy to see in the laboratory, that prostate cancer cells double every 30-48 hours, and taxane stops them from doing that, which pushes these cells to die. This leads everyone to think that this is exclusively how taxanes work – they stop cells from dividing."

But Dr. Giannakakou and her research team point out in their new study that patients have significantly lower rates of cell division in their tumors than do cancer cells growing in the lab. In fact, cancer cells in prostate cancer patients only divide every 33-577 days, she says. "Thus, the therapeutic benefit of taxanes on microtubules depends on more than just stopping cell division."

The new insights provided by this study about the action of taxanes on AR trafficking helps explain the clinical activity of these drugs in the treatment of prostate cancer while at the same time can help researchers better understand why an individual patient might respond or not to taxane therapy. Such insights are critical for future chemotherapy customization, according to researchers.

The drug that was later named Taxol (pacilitaxel) was isolated from the bark of a Pacific yew tree by federal researchers in 1967 and was later synthesized. It 1993 it was approved for use in ovarian cancer, and has since been used for lung, breast, head and neck and other cancers. Taxotere (docetaxel), synthesized from chemicals extracted from the European yew tree, was developed as an alternative to Taxol, and is used for the treatment of many of the same cancer types. Cabazitaxel, the newest taxane, is a semi-synthetic paclitaxel analog and is used to treat patients with prostate cancer who have failed prior docetaxel chemotherapy.

"In the 20 years since Taxol was approved, hundreds of labs worldwide are trying to understand how taxanes work to stop cell division in cancer," Dr. Giannakakou says. "However, we think they need to now take a fresh approach and look at what these drugs do during the normal life cycle of a cancer cell and target the newly revealed underlying mechanisms and modes of movement with novel therapies, in combination with taxane therapy, to provide life-saving therapy for patients who don't benefit from taxanes."

Investigators working with Dr. Giannakakou on the study are the first author Maria Thadani-Mulero, who is a graduate student enrolled at Surrey University, UK performing her thesis work in Dr. Giannakakou's laboratory, and Dr. David M. Nanus, the Mark W. Pasmantier Professor of Hematology and Oncology in Medicine and chief of the Division of Hematology and Medical Oncology at Weill Cornell.

This study was funded by grants from the National Institutes of Health, the National Cancer Institute's Physical Sciences-Oncology Center at Cornell University, the Weill Cornell Clinical and Translational Science Center, a Creativity Award from the Prostate Cancer Foundation, and support from the Genitourinary Oncology Research Fund.

Weill Cornell Medical College

Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research from bench to bedside, aimed at unlocking mysteries of the human body in health and sickness and toward developing new treatments and prevention strategies. In its commitment to global health and education, Weill Cornell has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, the Medical College is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances -- including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. Weill Cornell Medical College is affiliated with NewYork-Presbyterian Hospital, where its faculty provides comprehensive patient care at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. The Medical College is also affiliated with the Methodist Hospital in Houston. For more information, visit weill.cornell.edu.

Lauren Woods | EurekAlert!
Further information:
http://www.weill.cornell.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>