Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Reveal Malaria's Deadly Grip

06.06.2013
Researchers at the University of Copenhagen, in collaboration with Seattle Biomedical Research Institute, the University of Oxford, NIMR Tanzania and Retrogenix LTD, have identified how malaria parasites growing inside red blood cells stick to the sides of blood vessels in severe cases of malaria. The discovery may advance the development of vaccines or drugs to combat severe malaria by stopping the parasites attaching to blood vessels.

Though researchers have known for over a century that red blood cells infected with malaria parasites can kill their host by sticking to the sides of blood vessels, the binding mechanism associated with the most lethal forms of malaria was unknown.

Now, in a study published in Nature, the researchers show that the parasite binds a protein in blood vessel walls called endothelial protein C (EPCR), which is involved with regulating blood coagulation and the inflammatory response.

Malaria parasites grow in red blood cells and stick to the endothelial lining of blood vessels through a large family of parasite proteins called PfEMP1. This way, the parasite avoids being carried with the blood to the spleen, where it would otherwise be destroyed. One of the most aggressive forms of malaria parasite binds in brain blood vessels, causing a disease called cerebral malaria. In 2012, three groups of researchers, including the teams at the University of Copenhagen and Seattle Biomedical Research Institute, showed that a specific type of PfEMP1 protein was responsible for cerebral binding and other severe forms of malaria infection. However, until now, the receptor to which it binds remained unknown, and the next big question was to determine which receptors the infected red blood cells were binding to.

“The first big challenge was to generate a full-length PfEMP1 protein in the laboratory,” says Assistant Professor Louise Turner at the University of Copenhagen. “Next, we utilized a new technology developed by Retrogenix LTD in the United Kingdom to examine which of over 2,500 human proteins this PfEMP1 protein could bind to.” Of the 2,500 proteins screened, a receptor called endothelial protein C (EPCR) was the single solid hit.

“A lot of work then went into confirming this binding in the lab and not least to show that parasites from non-immune children with severe malaria symptoms in Tanzania often bound EPCR,” she continues.

“It was a true eureka moment,” says Assistant Professor Thomas Lavstsen. “Under normal conditions, ECPR plays a crucial role in regulating blood clotting, inflammation, cell death and the permeability of blood vessels. The discovery that parasites bind and interfere with this receptor´s normal function may help us explain why severe symptoms of malaria develop."

Malaria parasites disrupt the important functions of blood vessels
Severe malaria symptoms such as cerebral malaria often result in minor blood clots in the brain. One of our body´s responses to malaria infection is to produce inflammatory cytokines, but too much inflammation is dangerous, describes Professor Joseph Smith, from the Seattle Biomedical Research Institute. “ECPR and a factor in the blood called protein C act as a ‘brake’ on blood coagulation and endothelial cell inflammation and also enhance the viability and integrity of blood vessels, but when the malaria parasites use PfEMP1 to bind EPCR, they may interfere with the normal function of EPCR, and thus the binding can be the catalyst for the violent reaction,” he explains.

“Investigating this question is the next step to learn about how malaria parasites cause disease.”

Towards an intervention
The discovery that malaria parasites bind EPCR may advance vaccine and drug interventions to treat severe malaria. Dr. Matthew Higgins from the University of Oxford explains:

“Now that we know the pair of proteins involved, we can begin zooming further in to reveal the molecular details of how malaria parasites grab onto the sides of blood vessels. We want to know exactly which bits of the parasite protein are needed to bind to the receptor in the blood vessel wall. Then, we can aim to design vaccines or drugs to prevent this binding.”

Vaccine research will also benefit immediately from the discovery, since scientists can already now test the effectiveness of different vaccine candidates at preventing PfEMP1 from binding ECPR. “Over the last decade, we have come to appreciate that specific PfEMP1 proteins are associated with different severe forms of malaria,” explains Professor Thor Theander at the University of Copenhagen. “Together with The National Institute for Medical Research Tanzania, we are in the process of preparing phase I trials for a vaccine to prevent parasite binding in the placenta and malaria during pregnancy,” he explains. This new discovery holds the potential for also developing a vaccine to reduce the heavy burden malaria disease inflicts on children. “It will be a long haul, but with these results, we can get started right away,” he says.

ABOUT SEATTLE BIOMEDICAL RESEARCH INSTITUTE:
Seattle BioMed is the largest independent, non-profit organization in the U.S. focused solely on infectious disease research. Our research is the foundation for new drugs, vaccines and diagnostics that benefit those who need our help most: the 14 million who will otherwise die each year from infectious diseases, including malaria, HIV/AIDS and tuberculosis. Founded in 1976, Seattle BioMed has more than 330 staff members. By partnering with key collaborators around the globe, we strive to make discoveries that will save lives sooner. For more information, visit www.seattlebiomed.org.

Hannah Krakauer | Newswise
Further information:
http://www.seattlebiomed.org

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>