Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers map the global spread of drug-resistant influenza

15.09.2011
In the new movie “Contagion,” fictional health experts scramble to get ahead of a flu-like pandemic as a drug-resistant virus quickly spreads, killing millions of people within days after they contract the illness.

Although the film isn’t based entirely on reality, it’s not exactly science fiction, either.

“Certain strains of influenza are becoming resistant to common treatments,” said Ira M. Longini, a professor of biostatistics in the University of Florida College of Public Health and Health Professions, the UF College of Medicine, and the UF Emerging Pathogens Institute. “We’ve been able to map out globally how this phenomenon is happening.”

Longini is among a team of researchers who have published this month in the Royal Society journal Interface and explain how seasonal H1N1 influenza became resistant to oseltamivir, otherwise known as Tamiflu, the most widely used antiviral agent for treating and preventing flu. The scientists say that a combination of genetic mutations and human migration through air travel can lead to the rapid global spread of drug-resistant strains.

“If you see resistant strains in parts of the world where no one is taking antiviral drugs, that’s the smoking gun that the resistant strain must be transmitting,” said Longini, who also worked on this research at the Fred Hutchinson Cancer Research Center in Seattle.

In some situations, drug-resistant bacteria and viruses can spread when drugs are overused. The scientists explored this theory using a mathematical model that simulates the spread of influenza across 321 cities connected by air travel. Using this model, they found that oseltamivir use had not been nearly widespread enough to promote the spread of antiviral resistance after it arose. However, the resistant strain probably originated in one person taking the drug.

“Oseltamivir is an important prophylactic, or preventative agent, against future flu viruses, including a potential H5N1, or ‘bird flu,’ pandemic,” said Dennis Chao, the lead author of the paper and a staff scientist at the Center for Statistics and Quantitative Infectious Diseases at the Fred Hutchinson Cancer Research Center.

However, influenza can mutate, making the drug less effective. It had been believed that this mutation would not spread because it makes the flu less transmissible in people not taking the drug.

“The fact that it spread so quickly in seasonal H1N1 between 2006 and 2008 took everyone by surprise,” Chao said.

The researchers say that the mutation may have “hitchhiked” on one or more other mutations that made the drug-resistant influenza strain more transmissible. They suggest that because strains of influenza turn over so rapidly, there are many opportunities for these types of mutations to arise in an otherwise highly transmissible strain and become widespread, and it can become the dominant strain within a couple of years, making the drug useless.

“For the next pandemic, we should have all the available drugs at our disposal as a first line of defense to both prevent infection and to treat the most vulnerable,” Longini said. “Or else, the chance that the next pandemic influenza strain is resistant goes up. We know something like ‘Contagion’ could happen for influenza.”

Jesse D. Bloom of the Fred Hutchinson Cancer Research Center, and Beth F. Kochin and Rustom Antia of Emory University are also authors of the paper.

Ira M. Longini | EurekAlert!
Further information:
http://www.ufl.edu

Further reports about: Cancer H1N1 Hutchinson genetic mutation strains of influenza

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>