Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers improve severe asthma care through new, antibody-based treatment

09.09.2014

A team of researchers at McMaster University and St. Joseph's Healthcare Hamilton have successfully evaluated a new, antibody-based drug for certain patients with severe asthma.

The drug – named mepolizumab – can replace traditional, steroid-based treatments for a specific subset of patients, resulting in improved outcomes and reduced side effects.

The study and manuscript, published in the New England Journal of Medicine was led in Canada by Dr. Parameswaran Nair, staff respirologist, Firestone Institute for Respiratory Health at St. Joseph's Healthcare Hamilton and professor of respirology at the Michael G. DeGroote School of Medicine at McMaster University. Dr. Nair and his colleagues recruited the largest number of participants for this global study.

"This new drug is the only therapy that has been proven to be effective in well-established clinical trials to help reduce doses of steroid-based treatments such as prednisone for those with severe asthma," said Dr. Nair, adding that the paper reconfirms the team's observation published in the New England Journal of Medicine in 2009.

Patients with severe asthma often require high doses of steroid-based treatments that can significantly impair their quality of life. These high doses can cause debilitating side effects including mood swings, diabetes, bone loss, skin bruising, cataracts and hypertension.

Previous research at the Hamilton institutions has identified specific types of patient with severe asthma have an overabundance of a particular type of white blood cell (eosinophils) present in their sputum. These patients often suffer from the most severe asthma symptoms and can only be treated through steroid-based medications such as prednisone.

"This is an exciting example of personalized medicine for asthma," said Nair. "This discovery now tells us by using a simple blood or sputum eosinophil count, we can identify which asthma patients can benefit from this new treatment. 

Veronica McGuire | Eurek Alert!
Further information:
http://www.mcmaster.ca

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>