Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers improve severe asthma care through new, antibody-based treatment

09.09.2014

A team of researchers at McMaster University and St. Joseph's Healthcare Hamilton have successfully evaluated a new, antibody-based drug for certain patients with severe asthma.

The drug – named mepolizumab – can replace traditional, steroid-based treatments for a specific subset of patients, resulting in improved outcomes and reduced side effects.

The study and manuscript, published in the New England Journal of Medicine was led in Canada by Dr. Parameswaran Nair, staff respirologist, Firestone Institute for Respiratory Health at St. Joseph's Healthcare Hamilton and professor of respirology at the Michael G. DeGroote School of Medicine at McMaster University. Dr. Nair and his colleagues recruited the largest number of participants for this global study.

"This new drug is the only therapy that has been proven to be effective in well-established clinical trials to help reduce doses of steroid-based treatments such as prednisone for those with severe asthma," said Dr. Nair, adding that the paper reconfirms the team's observation published in the New England Journal of Medicine in 2009.

Patients with severe asthma often require high doses of steroid-based treatments that can significantly impair their quality of life. These high doses can cause debilitating side effects including mood swings, diabetes, bone loss, skin bruising, cataracts and hypertension.

Previous research at the Hamilton institutions has identified specific types of patient with severe asthma have an overabundance of a particular type of white blood cell (eosinophils) present in their sputum. These patients often suffer from the most severe asthma symptoms and can only be treated through steroid-based medications such as prednisone.

"This is an exciting example of personalized medicine for asthma," said Nair. "This discovery now tells us by using a simple blood or sputum eosinophil count, we can identify which asthma patients can benefit from this new treatment. 

Veronica McGuire | Eurek Alert!
Further information:
http://www.mcmaster.ca

More articles from Health and Medicine:

nachricht Cardiac diseases: when less is more
30.03.2017 | Universitätsspital Bern

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>