Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Proteins That May Help Brain Tumors Spread

24.09.2013
Scientists at the University of Alabama at Birmingham have identified a molecular pathway that seems to contribute to the ability of malignant glioma cells in a brain tumor to spread and invade previously healthy brain tissue.

Researchers said the findings, published Sept. 19, 2013, in the journal PLOS ONE, provide new drug-discovery targets to rein in the ability of these cells to move.

Gliomas account for about a third of brain tumors, and survival rates are poor; only about half of the 10,000 Americans diagnosed with malignant glioma survive the first year, and only about one quarter survive for two years.

“Malignant gliomas are notorious, not only because of their resistance to conventional chemotherapy and radiation therapy, but also for their ability to invade the surrounding brain, thus causing neurological impairment and death,” said Hassan Fathallah-Shaykh, M.D., Ph.D., associate professor in the UAB Department of Neurology. “Brain invasion, a hallmark of gliomas, also helps glioma cells evade therapeutic strategies.”

Fathallah-Shaykh said there is a great deal of interest among scientists in the idea that a low-oxygen environment induces glioma cells to react with aggressive movement, migration and brain invasion. A relatively new cancer strategy to shrink tumors is to cut off the tumor’s blood supply – and thus its oxygen source – through the use of anti-angiogenesis drugs. Angiogenesis is the process of making new blood vessels.

“Stop angiogenesis and you shut off a tumor’s blood and oxygen supply, denying it the components it needs to grow,” said Fathallah-Shaykh. “Drugs that stop angiogenesis are believed to create a kind of killing field. This study identified four glioma cell lines that dramatically increased their motility when subjected to a low-oxygen environment – in effect escaping the killing field to create a new colony elsewhere in the brain.”

Fathallah-Shaykh and his team then identified two proteins that form a pathway linking low oxygen, or hypoxia, to increased motility.

“We identified a signaling protein that is activated by hypoxia called Src,” said Fathallah-Shaykh. “We also identified a downstream protein called neural Wiskott-Aldrich syndrome protein (N-WASP), which is regulated by Src in the cell lines with increased motility.”

The researchers then used protein inhibitors to shut off Src and N-WASP. When either protein was inhibited, low oxygen lost its ability to augment cell movement.

“These findings indicate that Src, N-WASP and the linkage between them – which is something we don’t fully understand yet – are key targets for drugs that would interfere with the ability of a cell to move.” said Fathallah-Shaykh. “If we can stop them from moving, then techniques such as anti-angiogenesis should be much more effective. Anti-motility drugs could be a key component in treating gliomas in the years to come.”

Fathallah-Shaykh’s research is funded by the National Institutes of Health and the Gaining Life Initiative. GLI is a foundation created by Birmingham resident Bill Cash, who was diagnosed with a glioma in 2008. Following therapy at UAB, Cash set up the foundation to build awareness of brain cancer and raise money for neuro-oncology research at UAB. Bill Cash succumbed to cancer in the fall of 2012, but GLI continues to provide hope and support for cancer research.

About UAB
Known for its innovative and interdisciplinary approach to education at both the graduate and undergraduate levels, the University of Alabama at Birmingham (UAB) is an internationally renowned research university and academic medical center and the state of Alabama’s largest employer with some 23,000 employees and an economic impact exceeding $5 billion annually on the state. The five pillars of UAB’s mission deliver knowledge that will change your world: the education of students, who are exposed to multidisciplinary learning and a new world of diversity; research, the creation of new knowledge; patient care, the outcome of ‘bench-to-bedside’ translational knowledge; service to the community at home and around the globe, from free clinics in local neighborhoods to the transformational experience of the arts; and the economic development of Birmingham and Alabama. Learn more at www.uab.edu.
EDITOR’S NOTE: The University of Alabama at Birmingham (UAB) is a separate, independent institution from the University of Alabama, which is located in Tuscaloosa. Please use University of Alabama at Birmingham on first reference and UAB on second reference.

VIDEO: www.youtube.com/uabnews TEXT: www.uab.edu/news TWEETS: www.twitter.com/uabnews

Bob Shepard | EurekAlert!
Further information:
http://www.uab.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>