Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify a promising target for Multiple Sclerosis treatments

20.03.2013
A team of basic and clinical scientists led by the University of Montreal Hospital* Research Centre’s (CRCHUM) Dr. Nathalie Arbour has opened the door to significantly improved treatments for the symptoms of Multiple Sclerosis (MS).
In a study selected as among the top 10% most interesting articles published in the Journal of Immunology, the team identifies the elevated presence in MS patients of a type of white blood cell (CD4 T cell) that expresses NKG2C, a highly-toxic molecule harmful to brain tissues.

In close collaboration with clinicians at the University of Montreal Hospital and the Montreal Neurological Institute, McGill University, Dr. Arbour’s team studied tissues from healthy subjects and MS patients. This approach enabled the team to uncover a novel mechanism by which CD4 T cells expressing NKG2C can directly target brain cells having a specific corresponding ligand found only in MS patients. “These results are very encouraging,” says Arbour, “since they provide us with a much more refined picture of how the brain cells of MS patients are targeted by the immune system and provide us with a clearer understanding of how to go about blocking their action.”

There is no known cure for this auto-immune disease of the central nervous system. While there are a number of approved MS therapies targeting molecules expressed by immune cells, they are sometimes too broad in their application. They can suppress the efficiency of the immune system but also open the way for serious infections in some MS patients such as progressive multifocal leukoencephalopathy, a serious viral disease that can cause death in people with severe immune deficiency, such as MS patients on immunosuppressive medication.

“Our research has made an important step in getting around this problem. Because NKG2C is specifically expressed by a subset of CD4 T cells only found in MS patients, targeting this receptor would not affect large populations of immune cells, but only those which produce the symptoms characteristic of this debilitating disease,” explains Arbour.

For patients this discovery could translate into improved treatments aimed at decreasing the progression of the disease and its symptoms, without the risk of potentially lethal infections and therefore improving their quality of life.

About Multiple Sclerosis
With more than 75,000 Multiple Sclerosis patients, Canada has one of the highest incidences of the disease in the world. The intrusion of the body’s immune system into the brain affects the ability of neurons in the brain and in the spinal cord to communicate efficiently with one another, producing extensive and recurrent central nervous system damage. Multiple Sclerosis symptoms can include paralysis, pricking or numbness, visual problems, difficulties with coordination, balance and movement, which lead to chronic handicap.

About the study
“Cytotoxic NKG2C+ CD4 T Cells Target Oligodendrocytes in Multiple Sclerosis” was featured in the March 15 issue of the Journal of Immunology, where it was selected as being among the top 10% most interesting articles published in the journal. The research team included basic and clinical scientists from the University of Montreal Hospital and the Montreal Neurological Institute, McGill University.

About Dr. Nathalie Arbour
Dr. Arbour is a researcher in the Neuroscience Axis at the University of Montreal Hospital Research Centre and a Research Associate Professor at the Department of Medicine, University of Montreal. Her research program is funded by the Multiple Sclerosis Society of Canada, the Canada Foundation for Innovation and she currently holds a New Investigator Award from the Canadian Institutes of Health Research.

About the CRCHUM
The University of Montreal Hospital* Research Centre (CRCHUM) improves the health of adults through a high-quality academic research continuum which, by improving our understanding of etiological and pathogenic mechanisms, fosters the development, implementation and assessment of new preventive, diagnostic and therapeutic strategies. The CRCHUM provides a training environment to ensure the development of new generations of researchers committed to research excellence.

*The University of Montreal Hospital and the University of Montreal are known officially as Centre hospitalier de l’Université de Montréal and Université de Montréal, respectively.

About The Neuro
The Montreal Neurological Institute and Hospital - The Neuro, is a unique academic medical centre dedicated to neuroscience. A research and teaching institute of McGill University, The Neuro forms the basis for the Neuroscience Mission of the McGill University Health Centre. Founded in 1934 by Dr. Wilder Penfield, The Neuro is recognized internationally for integrating research, compassionate patient care and advanced training, all key to advances in science and medicine. Neuro researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders.

Source :
Communication Division
Centre hospitalier de l’Université de Montréal (CHUM)

Sylvie Robitaille | EurekAlert!
Further information:
http://www.mcgill.ca/channels/news/researchers-identify-promising-target-multiple-sclerosis-treatments-225472

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>