Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify a promising target for Multiple Sclerosis treatments

20.03.2013
A team of basic and clinical scientists led by the University of Montreal Hospital* Research Centre’s (CRCHUM) Dr. Nathalie Arbour has opened the door to significantly improved treatments for the symptoms of Multiple Sclerosis (MS).
In a study selected as among the top 10% most interesting articles published in the Journal of Immunology, the team identifies the elevated presence in MS patients of a type of white blood cell (CD4 T cell) that expresses NKG2C, a highly-toxic molecule harmful to brain tissues.

In close collaboration with clinicians at the University of Montreal Hospital and the Montreal Neurological Institute, McGill University, Dr. Arbour’s team studied tissues from healthy subjects and MS patients. This approach enabled the team to uncover a novel mechanism by which CD4 T cells expressing NKG2C can directly target brain cells having a specific corresponding ligand found only in MS patients. “These results are very encouraging,” says Arbour, “since they provide us with a much more refined picture of how the brain cells of MS patients are targeted by the immune system and provide us with a clearer understanding of how to go about blocking their action.”

There is no known cure for this auto-immune disease of the central nervous system. While there are a number of approved MS therapies targeting molecules expressed by immune cells, they are sometimes too broad in their application. They can suppress the efficiency of the immune system but also open the way for serious infections in some MS patients such as progressive multifocal leukoencephalopathy, a serious viral disease that can cause death in people with severe immune deficiency, such as MS patients on immunosuppressive medication.

“Our research has made an important step in getting around this problem. Because NKG2C is specifically expressed by a subset of CD4 T cells only found in MS patients, targeting this receptor would not affect large populations of immune cells, but only those which produce the symptoms characteristic of this debilitating disease,” explains Arbour.

For patients this discovery could translate into improved treatments aimed at decreasing the progression of the disease and its symptoms, without the risk of potentially lethal infections and therefore improving their quality of life.

About Multiple Sclerosis
With more than 75,000 Multiple Sclerosis patients, Canada has one of the highest incidences of the disease in the world. The intrusion of the body’s immune system into the brain affects the ability of neurons in the brain and in the spinal cord to communicate efficiently with one another, producing extensive and recurrent central nervous system damage. Multiple Sclerosis symptoms can include paralysis, pricking or numbness, visual problems, difficulties with coordination, balance and movement, which lead to chronic handicap.

About the study
“Cytotoxic NKG2C+ CD4 T Cells Target Oligodendrocytes in Multiple Sclerosis” was featured in the March 15 issue of the Journal of Immunology, where it was selected as being among the top 10% most interesting articles published in the journal. The research team included basic and clinical scientists from the University of Montreal Hospital and the Montreal Neurological Institute, McGill University.

About Dr. Nathalie Arbour
Dr. Arbour is a researcher in the Neuroscience Axis at the University of Montreal Hospital Research Centre and a Research Associate Professor at the Department of Medicine, University of Montreal. Her research program is funded by the Multiple Sclerosis Society of Canada, the Canada Foundation for Innovation and she currently holds a New Investigator Award from the Canadian Institutes of Health Research.

About the CRCHUM
The University of Montreal Hospital* Research Centre (CRCHUM) improves the health of adults through a high-quality academic research continuum which, by improving our understanding of etiological and pathogenic mechanisms, fosters the development, implementation and assessment of new preventive, diagnostic and therapeutic strategies. The CRCHUM provides a training environment to ensure the development of new generations of researchers committed to research excellence.

*The University of Montreal Hospital and the University of Montreal are known officially as Centre hospitalier de l’Université de Montréal and Université de Montréal, respectively.

About The Neuro
The Montreal Neurological Institute and Hospital - The Neuro, is a unique academic medical centre dedicated to neuroscience. A research and teaching institute of McGill University, The Neuro forms the basis for the Neuroscience Mission of the McGill University Health Centre. Founded in 1934 by Dr. Wilder Penfield, The Neuro is recognized internationally for integrating research, compassionate patient care and advanced training, all key to advances in science and medicine. Neuro researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders.

Source :
Communication Division
Centre hospitalier de l’Université de Montréal (CHUM)

Sylvie Robitaille | EurekAlert!
Further information:
http://www.mcgill.ca/channels/news/researchers-identify-promising-target-multiple-sclerosis-treatments-225472

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>